-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHIMMELP3.SIF
224 lines (179 loc) · 4.97 KB
/
HIMMELP3.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
***************************
* SET UP THE INITIAL DATA *
***************************
NAME HIMMELP3
* Problem :
* *********
* A nonlinear problem with inequality constraints, attributed to Himmelblau
* by B.N. Pshenichnyj (case II)
* The problem is nonconvex and has redundant constraints at the solution.
* Source:
* B.N. Pshenichnyj
* "The Linearization Method for Constrained Optimization",
* Springer Verlag, SCM Series 22, Heidelberg, 1994
* SIF input: Ph. Toint, December 1994.
* classification OQR2-AN-2-2
* Problem data
RE B1 0.1963666677
RA B1 B1 75.0
RE B2 -.8112755343
RA B2 B2 -3.0
RE B6 -.8306567613
RA B6 B6 -6.0
RM -B2 B2 -1.0
RM -B6 B6 -1.0
VARIABLES
X1
X2
GROUPS
ZN OBJ X1 -B2
ZN OBJ X2 -B6
XG C5
XL C8 X2 -1.0
CONSTANTS
Z HIMMELP3 OBJ B1
X HIMMELP3 C5 700.0
BOUNDS
UP HIMMELP3 X1 75.0
UP HIMMELP3 X2 65.0
START POINT
XV HIMMELP3 X1 31.0
XV HIMMELP3 X2 48.0
* Solution
*XV HIMMELP3 X1 75.0
*XV HIMMELP3 X2 65.0
ELEMENT TYPE
EV OBNL X Y
EV 2PR X Y
EV SQ X
ELEMENT USES
T OB OBNL
ZV OB X X1
ZV OB Y X2
T X1X2 2PR
ZV X1X2 X X1
ZV X1X2 Y X2
T X1SQ SQ
ZV X1SQ X X1
GROUP USES
XE OBJ OB -1.0
XE C5 X1X2
XE C8 X1SQ 0.008
OBJECT BOUND
* Solution
*LO SOLTN -59.01312394
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS HIMMELP3
TEMPORARIES
R B3
R B4
R B5
R B7
R B8
R B9
R B10
R B11
R B12
R B13
R B14
R B15
R B16
R B17
R B18
R B19
R B20
R E
R DEDX
R DEDY
R D2EDXX
R D2EDXY
R D2EDYY
R A
R DADX
R D2ADXX
R B
R DBDX
R D2BDXX
R C
R DCDX
R D2CDXX
R F
R DFDY
R D2FDYY
R G
R DGDX
R D2GDXX
M EXP
INDIVIDUALS
T OBNL
A B3 .1269366345
A B4 -0.20567665
A B4 0.01 * B4
A B5 0.103450d-4
A B7 .0302344793
A B8 -0.12813448
A B8 0.01 * B8
A B9 0.352599d-4
A B10 -0.2266d-6
A B11 0.2564581253
A B12 -.003460403
A B13 0.135139d-4
A B14 -.1064434908
A B14 B14 - 28.0
A B15 -0.52375d-5
A B16 -0.63d-8
A B17 0.7d-9
A B18 0.3405462
A B18 0.001 * B18
A B19 -0.16638d-5
A B20 -2.86731123
A B20 B20-0.92d-8
A A B7*X+B8*X**2+B9*X**3+B10*X**4
A DADX B7+2.0*B8*X+3.0*B9*X**2+4.0*B10*X**3
A D2ADXX 2.0*B8+6.0*B9*X+12.0*B10*X**2
A B B18*X+B15*X**2+B16*X**3
A DBDX B18+2.0*B15*X+3.0*B16*X**2
A D2BDXX 2.0*B15+6.0*B16*X
A C B3*X**2+B4*X**3+B5*X**4
A DCDX 2.0*B3*X+3.0*B4*X**2+4.0*B5*X**3
A D2CDXX 2.0*B3+6.0*B4*X+12.0*B5*X**2
A F B11*Y**2+B12*Y**3+B13*Y**4
A DFDY 2.0*B11*Y+3.0*B12*Y**2+4.0*B13*Y**3
A D2FDYY 2.0*B11+ 6.0*B12*Y+12.0*B13*Y**2
A G B17*X**3+B19*X
A DGDX B19 + 3.0 * B17 * X**2
A D2GDXX 6.0 * B17 * X
A E EXP( 0.0005 * X * Y )
A DEDX 0.0005 * Y * E
A DEDY 0.0005 * X * E
A D2EDXX 0.0005 * Y * DEDX
A D2EDXY 0.0005 * ( Y * DEDY + E )
A D2EDYY 0.0005 * X * DEDY
F C + Y * A + F + B14 / ( 1.0 + Y )
F+ + B * Y**2 + G * Y**3 + B20 * E
G X DCDX + Y * DADX + DBDX * Y**2
G+ + DGDX * Y**3 + B20 * DEDX
G Y A + DFDY - B14 / ( 1.0 + Y )**2
G+ + 2.0 * B * Y + 3.0 * G * Y**2
G+ + B20 * DEDY
H X X D2CDXX + Y * D2ADXX + D2BDXX * Y**2
H+ + D2GDXX * Y**3 + B20 * D2EDXX
H X Y DADX + 2.0 * Y * DBDX
H+ + 3.0 * DGDX *Y**2 + B20 * D2EDXY
H Y Y D2FDYY + 2.0 * B14 / ( 1.0 + Y )**3
H+ + 2.0 * B + 6.0 * G * Y
H+ + B20 * D2EDYY
T 2PR
F X * Y
G X Y
G Y X
H X Y 1.0
T SQ
F X * X
G X X + X
H X X 2.0
ENDATA