-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHS100LNP.SIF
189 lines (134 loc) · 3.73 KB
/
HS100LNP.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
***************************
* SET UP THE INITIAL DATA *
***************************
NAME HS100LNP
* Problem :
* *********
* Source: problem 100 in
* W. Hock and K. Schittkowski,
* "Test examples for nonlinear programming codes",
* Lectures Notes in Economics and Mathematical Systems 187, Springer
* Verlag, Heidelberg, 1981.
* This problem has been modified 20 Oct 92 by Todd Plantenga as follows.
* The nonlinear inequality constraints are removed (if inactive
* at the solution) or changed to equalities (if active).
* SIF input: Ph. Toint, April 1991 and T. Plantenga, October 1992.
* classification OOR2-AN-7-2
IE 1 1
IE 7 7
VARIABLES
DO I 1 7
X X(I)
ND
GROUPS
N O1 X1 1.0
N O2 X2 1.0
N O2 'SCALE' 0.2
N O4 X4 1.0
N O4 'SCALE' 0.33333333333
N O5 X6 -10.0 X7 -8.0
E C1 X3 -1.0 X5 -5.0
E C4 X6 -5.0 X7 11.0
CONSTANTS
X HS100LNP O1 10.0
X HS100LNP O2 12.0
X HS100LNP O4 11.0
X HS100LNP C1 -127.0
BOUNDS
FR HS100LNP 'DEFAULT'
START POINT
XV HS100LNP X1 1.0
XV HS100LNP X2 2.0
XV HS100LNP X3 0.0
XV HS100LNP X4 4.0
XV HS100LNP X5 0.0
XV HS100LNP X6 1.0
XV HS100LNP X7 1.0
ELEMENT TYPE
EV ELT X Y
EV SQ X
EV P4 X
EV P6 X
EV 2PR X Y
ELEMENT USES
T X5P6 P6
ZV X5P6 X X5
T EL ELT
ZV EL X X6
ZV EL Y X7
T X1SQ SQ
ZV X1SQ X X1
T X2SQ SQ
ZV X2SQ X X2
T X3SQ SQ
ZV X3SQ X X3
T X4SQ SQ
ZV X4SQ X X4
T X6SQ SQ
ZV X6SQ X X6
T X2P4 P4
ZV X2P4 X X2
T X3P4 P4
ZV X3P4 X X3
T X1X2 2PR
ZV X1X2 X X1
ZV X1X2 Y X2
GROUP TYPE
GV L2 GVAR
GROUP USES
T O1 L2
T O2 L2
T O4 L2
E O5 X5P6 10.0 EL
E O5 X3P4
E C1 X1SQ -2.0 X2P4 -3.0
E C1 X4SQ -4.0
E C4 X1SQ -4.0 X2SQ -1.0
E C4 X1X2 3.0 X3SQ -2.0
OBJECT BOUND
* Solution
*LO SOLTN 680.6300573
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS HS100LNP
INDIVIDUALS
T SQ
F X * X
G X X + X
H X X 2.0
T P4
F X**4
G X 4.0 * X**3
H X X 12.0 * X**2
T P6
F X**6
G X 6.0 * X**5
H X X 30.0 * X**4
T ELT
F 7.0 * X**2 + Y**4 - 4.0 * X * Y
G X 14.0 * X - 4.0 * Y
G Y 4.0 * Y**3 - 4.0 * X
H X X 14.0
H X Y -4.0
H Y Y 12.0 * Y**2
T 2PR
F X * Y
G X Y
G Y X
H X Y 1.0
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS HS100LNP
* Least-square groups
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA