-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHS87.SIF
277 lines (204 loc) · 6.27 KB
/
HS87.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
***************************
* SET UP THE INITIAL DATA *
***************************
NAME HS87
* Problem :
* *********
* Optimization of an electrical network (EDF) by P. Huard.
* Source: problem 87 in
* W. Hock and K. Schittkowski,
* "Test examples for nonlinear programming codes",
* Lectures Notes in Economics and Mathematical Systems 187, Springer
* Verlag, Heidelberg, 1981.
* Note: There are two variants described in the papers
* D.H. Himmelblau "Applied nonlinear programming",
* McGraw-Hill, New-York, 1972, problem 15,
* and
* A.R. Colville, "A comparative study on nonlinear programming",
* IBM Scientific Center Report 320-2949, New York, 1968, problem 6.
* SIF input: Nick Gould, August 1991.
* classification OOI2-MN-6-4
* Number of variables
IE N 6
* problem parameters
RE A 131.078
RE B 1.48577 $ as quoted by H+S
*RE B 1.48477 $ as quoted by Himmelblau
*RE B 1.48477 $ as quoted by Colville
RE C 0.90798
RF D COS 1.47588
RF E SIN 1.47588
RE F 1.48577 $ as quoted by H+S
*RE F 1.48577 $ as quoted by Himmelblau
*RE F 1.48477 $ as quoted by Colville
* Other useful parameters
IE 1 1
RM -B B -1.0D+0
RM -F F -1.0D+0
R/ C/A C A
RD 1/A A 1.0D+0
RM -1/A 1/A -1.0D+0
R* CD/A C/A D
R* CE/A C/A E
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
N OBJ
E C1 X1 -1.0D+0
E C2 X2 -1.0D+0
E C3 X5 -1.0D+0
E C4
CONSTANTS
HS87 C1 -3.0D+2 C4 -2.0D+2
BOUNDS
LO HS87 X3 340.0
LO HS87 X4 340.0
LO HS87 X5 -1000.0
UP HS87 X1 400.0
UP HS87 X2 1000.0
UP HS87 X3 420.0
UP HS87 X4 420.0
UP HS87 X5 10000.0
UP HS87 X6 0.5236
START POINT
* HS87 X1 390.0 X2 1000.0
* HS87 X3 419.5 X4 340.5
* HS87 X5 198.175 X6 0.5
HS87SOL X1 107.8119 X2 196.3186
HS87SOL X3 373.8307 X4 420.0
HS87SOL X5 21.30713 X6 0.153292
ELEMENT TYPE
* Objective function F1
EV F1 V
* Objective function F2
EV F2 V
* Constraint function COS
EV COS V1 V2
EV COS V3
EP COS P
* Constraint function SIN
EV SIN V1 V2
EV SIN V3
EP SIN P
* Constraint function SQUARE
EV SQUARE V
ELEMENT USES
T OF1 F1
V OF1 V X1
T OF2 F2
V OF2 V X2
T C1E1 COS
V C1E1 V1 X3
V C1E1 V2 X4
V C1E1 V3 X6
ZP C1E1 P -F
T C1E2 SQUARE
V C1E2 V X3
T C2E1 COS
V C2E1 V1 X3
V C2E1 V2 X4
V C2E1 V3 X6
ZP C2E1 P B
T C2E2 SQUARE
V C2E2 V X4
T C3E1 SIN
V C3E1 V1 X3
V C3E1 V2 X4
V C3E1 V3 X6
ZP C3E1 P B
T C3E2 SQUARE
V C3E2 V X4
T C4E1 SIN
V C4E1 V1 X3
V C4E1 V2 X4
V C4E1 V3 X6
ZP C4E1 P -B
T C4E2 SQUARE
V C4E2 V X3
GROUP USES
E OBJ OF1 OF2
ZE C1 C1E1 -1/A
ZE C1 C1E2 CD/A
ZE C2 C2E1 -1/A
ZE C2 C2E2 CD/A
ZE C3 C3E1 -1/A
ZE C3 C3E2 CE/A
ZE C4 C4E1 1/A
ZE C4 C4E2 CE/A
OBJECT BOUND
* Solution
*LO SOLTN 8927.5977
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS HS87
TEMPORARIES
L I1
L I2
L I3
R F
R G
R SN
R CS
M SIN
M COS
INDIVIDUALS
* Objective function F1
T F1
A I1 V .LT. 300.0
A I2 V .GE. 300.0
I I1 F 30.0 * V
I I2 F 31.0 * V
I I1 G 30.0
I I2 G 31.0
F F
G V G
H V V 0.0D+0
* Objective function F2
T F2
A I1 V .LT. 100.0
A I2 V .GE. 100.0 .AND. V .LT. 200.0
A I3 V .GE. 200.0
I I1 F 28.0 * V
I I2 F 29.0 * V
I I3 F 30.0 * V
I I1 G 28.0
I I2 G 29.0
I I3 G 30.0
F F
G V G
H V V 0.0D+0
* Constraint function COS
T COS
A SN SIN( V3 + P )
A CS COS( V3 + P )
F V1 * V2 * CS
G V1 V2 * CS
G V2 V1 * CS
G V3 - V1 * V2 * SN
H V1 V2 CS
H V1 V3 - V2 * SN
H V2 V3 - V1 * SN
H V3 V3 - V1 * V2 * CS
* Constraint function SIN
T SIN
A SN SIN( V3 + P )
A CS COS( V3 + P )
F V1 * V2 * SN
G V1 V2 * SN
G V2 V1 * SN
G V3 V1 * V2 * CS
H V1 V2 SN
H V1 V3 V2 * CS
H V2 V3 V1 * CS
H V3 V3 - V1 * V2 * SN
* Constraint function SQUARE
T SQUARE
F V * V
G V V + V
H V V 2.0D+0
ENDATA