-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJNLBRNG2.SIF
330 lines (233 loc) · 8.47 KB
/
JNLBRNG2.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
***************************
* SET UP THE INITIAL DATA *
***************************
NAME JNLBRNG2
* Problem :
* *********
* The quadratic journal bearing problem (with excentricity = 0.5)
* This is a variant of the problem stated in the report quoted below.
* It corresponds to the problem as distributed in MINPACK-2.
* Source:
* J. More' and G. Toraldo,
* "On the Solution of Large Quadratic-Programming Problems with Bound
* Constraints",
* SIAM J. on Optimization, vol 1(1), pp. 93-113, 1991.
* SIF input: Ph. Toint, Dec 1989.
* modified by Peihuang Chen, according to MINPACK-2, Apr 1992
* classification QBR2-AY-V-0
* The rectangle is discretized into (pt-1)(py-1) little rectangles. The
* heights of the considered surface above the corners of these little
* rectangles are the problem variables, There are px*py of them.
* PT is the number of points along the T (\theta) side of the rectangle
* PY is the number of points along the Y side of the rectangle
*IE PT 4 $-PARAMETER n=16
*IE PY 4 $-PARAMETER
*IE PT 10 $-PARAMETER n=100
*IE PY 10 $-PARAMETER
*IE PT 23 $-PARAMETER n=529
*IE PY 23 $-PARAMETER
*IE PT 32 $-PARAMETER n=1024
*IE PY 32 $-PARAMETER
*IE PT 34 $-PARAMETER n=1156
*IE PY 34 $-PARAMETER
*IE PT 75 $-PARAMETER n=5625 original value
*IE PY 75 $-PARAMETER original value
IE PT 100 $-PARAMETER n=10000
IE PY 100 $-PARAMETER
*IE PT 125 $-PARAMETER n=15625
*IE PY 125 $-PARAMETER
* The excentricity
RE EX 0.5 $-PARAMETER the excentricity
* The domain is the rectangle [0,LT]x[0,LY]
RF PI/4 ARCTAN 1.
RM LT PI/4 8.
RE LY 20.0
*
RE SIX 6.0
* Compute the step in the \theta direction and its inverse
IA PT-1 PT -1
RI RPT-1 PT-1
RD HT1 RPT-1 1.0
R* HT HT1 LT
RD 1/HT HT 1.0
* Compute the step in the y direction and its inverse
IA PY-1 PY -1
RI RPY-1 PY-1
RD HY1 RPY-1 1.0
R* HY HY1 LY
RD 1/HY HY 1.0
* Compute their ratio and product
R* HTHY HT HY
R* HT/HY HT 1/HY
R* HY/HT HY 1/HT
* Compute the common coefficient for the linear term
R* EXHTHY HTHY EX
RM CLINC EXHTHY -1.0
* Useful constants
IE 1 1
IE 2 2
VARIABLES
* Define one variable per discretized point in the unit square
DO I 1 PT
DO J 1 PY
X X(I,J)
ND
GROUPS
* Group of the linear terms
DO I 2 PT-1
IA I-1 I -1
RI RI-1 I-1
R* XI1 RI-1 HT
R( SXI1 SIN XI1
R* COEFF SXI1 CLINC
DO J 2 PY-1
ZN G X(I,J) COEFF
ND
* TRIANGLES at the right upper side of node(i,j)
DO I 1 PT-1
DO J 1 PY-1
ZN GR(I,J)
XN GR(I,J) 'SCALE' 2.0
ND
* TRIANGLES at the left lower side of node(i,j)
DO I 2 PT
DO J 2 PY
ZN GL(I,J)
XN GL(I,J) 'SCALE' 2.0
ND
BOUNDS
* Fix the variables on the lower and upper edges of the domain
DO J 1 PY
XX JNLBRNG2 X(1,J) 0.0
XX JNLBRNG2 X(PT,J) 0.0
ND
* Fix the variables on the left and right edges of the domain
DO I 2 PT-1
XX JNLBRNG2 X(I,PY) 0.0
XX JNLBRNG2 X(I,1) 0.0
ND
* Other variables are positive
START POINT
DO I 2 PT-1
IA I-1 I -1
RI RI-1 I-1
R* XI1 RI-1 HT
R( SXI1 SIN XI1
DO J 2 PY-1
ZV JNLBRNG2 X(I,J) SXI1
ND
ELEMENT TYPE
* The only element type.
* The parameter will care for the factors involving HX and HY, MU
* and LA(mbda).
EV ISQ V1 V2
IV ISQ U
ELEMENT USES
* Each node has four elements
DO I 1 PT-1
IA I+1 I 1
DO J 1 PY-1
IA J+1 J 1
XT A(I,J) ISQ
ZV A(I,J) V1 X(I+1,J)
ZV A(I,J) V2 X(I,J)
XT B(I,J) ISQ
ZV B(I,J) V1 X(I,J+1)
ZV B(I,J) V2 X(I,J)
ND
DO I 2 PT
IA I-1 I -1
DO J 2 PY
IA J-1 J -1
XT C(I,J) ISQ
ZV C(I,J) V1 X(I-1,J)
ZV C(I,J) V2 X(I,J)
XT D(I,J) ISQ
ZV D(I,J) V1 X(I,J-1)
ZV D(I,J) V2 X(I,J)
ND
GROUP USES
* All groups are TRIVIAL
* GROUPS OF ALL THE TRIANGLES AT THE RIGHT OF A NODE
DO I 1 PT-1
* Compute w_q(z_{i,j}) = w_q(z_{i+1,j}) = w_q(z_{i-1,j})
* (independent of J, that is of \xi_2)
IA I-1 I -1
RI RI-1 I-1
R* XI1 RI-1 HT
R( CXI1 COS XI1
R* ECX CXI1 EX
RA ECX1 ECX 1.0
R* E12 ECX1 ECX1
R* WI ECX1 E12
R+ 2WI WI WI
* Compute w_q(z_{i+1,j}) (independent of J, that is of \xi_2)
R+ XI+1 XI1 HT
R( CXI+1 COS XI+1
R* E+CX0 CXI+1 EX
RA E+CX1 E+CX0 1.0
R* E22 E+CX1 E+CX1
R* WI+1 E+CX1 E22
* Compute \LAMBDA_{i,j}/ h_t^2 and \LAMBDA_{i,j} / h_y^2
* (independent of J, that is of \xi_2)
R+ PM0 2WI WI+1
R/ PM1 PM0 SIX
R* LA/HY2 PM1 HT/HY
R* LA/HT2 PM1 HY/HT
DO J 1 PY-1
ZE GR(I,J) A(I,J) LA/HT2
ZE GR(I,J) B(I,J) LA/HY2
ND
* GROUPS OF ALL THE TRIANGLES AT THE LEFT OF A NODE
DO I 2 PT
* Compute w_q(z_{i,j}) = w_q(z_{i+1,j}) = w_q(z_{i-1,j})
* (independent of J, that is of \xi_2)
IA I-1 I -1
RI RI-1 I-1
R* XI1 RI-1 HT
R( CXI1 COS XI1
R* ECX CXI1 EX
RA ECX1 ECX 1.0
R* E12 ECX1 ECX1
R* WI ECX1 E12
R+ 2WI WI WI
* Compute w_q(z_{i-1,j}) (independent of J, that is of \xi_2)
R- XI-1 XI1 HT
R( CXI-1 COS XI-1
R* E-CX0 CXI-1 EX
RA E-CX1 E-CX0 1.0
R* E32 E-CX1 E-CX1
R* WI-1 E-CX1 E32
* Compute \MU_{i,j} / h_y^2 and \MU_{i,j} / h_t^2
* (independent of J, that is of \xi_2)
R+ PL0 2WI WI-1
R/ PL1 PL0 SIX
R* MU/HY2 PL1 HT/HY
R* MU/HT2 PL1 HY/HT
DO J 2 PY
ZE GL(I,J) C(I,J) MU/HT2
ZE GL(I,J) D(I,J) MU/HY2
ND
OBJECT BOUND
LO JNLBRNG2 0.0
* Solution
*LO SOLTN(4) -0.4764000
*LO SOLTN(10) -0.3952800
*LO SOLTN(23) -0.4102400
*LO SOLTN(32) -0.4124900
*LO SOLTN(75) -0.4146600
*LO SOLTN(100) -0.4148700
*LO SOLTN(125) -0.4149600
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS JNLBRNG2
INDIVIDUALS
T ISQ
R U V1 1.0 V2 -1.0
F U * U
G U U + U
H U U 2.0
ENDATA