-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJNLBRNGB.SIF
278 lines (191 loc) · 7.03 KB
/
JNLBRNGB.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
***************************
* SET UP THE INITIAL DATA *
***************************
NAME JNLBRNGB
* Problem :
* *********
* The quadratic journal bearing problem (with excentricity = 0.5)
* Source:
* J. More' and G. Toraldo,
* "On the Solution of Large Quadratic-Programming Problems with Bound
* Constraints",
* SIAM J. on Optimization, vol 1(1), pp. 93-113, 1991.
* SIF input: Ph. Toint, Dec 1989.
* classification QBR2-AY-V-0
* The rectangle is discretized into (pt-1)(py-1) little rectangles. The
* heights of the considered surface above the corners of these little
* rectangles are the problem variables, There are px*py of them.
* PT is the number of points along the T (\theta) side of the rectangle
* PY is the number of points along the Y side of the rectangle
*IE PT 4 $-PARAMETER n=16
*IE PY 4 $-PARAMETER
*IE PT 10 $-PARAMETER n=100
*IE PY 10 $-PARAMETER
*IE PT 23 $-PARAMETER n=529
*IE PY 23 $-PARAMETER
*IE PT 32 $-PARAMETER n=1024
*IE PY 32 $-PARAMETER
*IE PT 34 $-PARAMETER n=1156
*IE PY 34 $-PARAMETER
*IE PT 75 $-PARAMETER n=5625 original value
*IE PY 75 $-PARAMETER original value
IE PT 100 $-PARAMETER n=10000
IE PY 100 $-PARAMETER
*IE PT 125 $-PARAMETER n=15625
*IE PY 125 $-PARAMETER
* The excentricity
RE EX 0.5 $-PARAMETER the excentricity
* The domain is the rectangle [0,LT]x[0,LY]
RE LT 6.2831853
RE LY 20.0
* Compute the step in the \theta direction and its inverse
IA PT-1 PT -1
RI RPT-1 PT-1
RD HT1 RPT-1 1.0
R* HT HT1 LT
RD 1/HT HT 1.0
* Compute the step in the y direction and its inverse
IA PY-1 PY -1
RI RPY-1 PY-1
RD HY1 RPY-1 1.0
R* HY HY1 LY
RD 1/HY HY 1.0
* Compute their ratio and product
R* HTHY HT HY
R* HT/HY HT 1/HY
R* HY/HT HY 1/HT
* Compute the common coefficient for the linear term
R* EXHTHY HTHY EX
RM CLINC EXHTHY -1.0
* Useful constants
IE 1 1
IE 2 2
VARIABLES
* Define one variable per discretized point in the unit square
DO I 1 PT
DO J 1 PY
X X(I,J)
ND
GROUPS
* Define a group per interior node and compute the linear terms
DO I 2 PT-1
* Compute w_l(z_{i,j}) = sin(\xi_1)
IA I-1 I -1
RI RI-1 I-1
R* XI1 RI-1 HT
R( SXI1 SIN XI1
R* COEFF SXI1 CLINC
DO J 2 PY-1
ZN G(I,J) X(I,J) COEFF
ND
BOUNDS
* Fix the variables on the lower and upper edges of the domain
DO J 1 PY
XX JNLBRNGB X(1,J) 0.0
XX JNLBRNGB X(PT,J) 0.0
ND
* Fix the variables on the left and right edges of the domain
DO I 2 PT-1
XX JNLBRNGB X(I,PY) 0.0
XX JNLBRNGB X(I,1) 0.0
ND
* Other variables are positive
ELEMENT TYPE
* The only element type.
* The parameter will care for the factors involving HX and HY, MU
* and LA(mbda).
EV ISQ V1 V2
IV ISQ U
ELEMENT USES
* Each node has four elements
DO I 2 PT-1
IA I+1 I 1
IA I-1 I -1
DO J 2 PY-1
IA J-1 J -1
IA J+1 J 1
XT A(I,J) ISQ
ZV A(I,J) V1 X(I+1,J)
ZV A(I,J) V2 X(I,J)
XT B(I,J) ISQ
ZV B(I,J) V1 X(I,J+1)
ZV B(I,J) V2 X(I,J)
XT C(I,J) ISQ
ZV C(I,J) V1 X(I-1,J)
ZV C(I,J) V2 X(I,J)
XT D(I,J) ISQ
ZV D(I,J) V1 X(I,J-1)
ZV D(I,J) V2 X(I,J)
ND
GROUP USES
* All groups are TRIVIAL
DO I 2 PT-1
* Compute w_q(z_{i,j}) = w_q(z_{i+1,j}) = w_q(z_{i-1,j})
* (independent of J, that is of \xi_2)
IA I-1 I -1
RI RI-1 I-1
R* XI1 RI-1 HT
R( CXI1 COS XI1
R* ECX CXI1 EX
RA ECX1 ECX 1.0
R* E12 ECX1 ECX1
R* WI ECX1 E12
R+ 2WI WI WI
* Compute w_q(z_{i+1,j}) (independent of J, that is of \xi_2)
RI RI I
R* XI+1 RI HT
R( CXI+1 COS XI+1
R* E+CX0 CXI+1 EX
RA E+CX1 E+CX0 1.0
R* E22 E+CX1 E+CX1
R* WI+1 E+CX1 E22
* Compute w_q(z_{i-1,j}) (independent of J, that is of \xi_2)
IA I-2 I -2
RI RI-2 I-2
R* XI-1 RI-2 HT
R( CXI-1 COS XI-1
R* E-CX0 CXI-1 EX
RA E-CX1 E-CX0 1.0
R* E32 E-CX1 E-CX1
R* WI-1 E-CX1 E32
* Compute \mu_{i,j}/ h_t^2 and \mu_{i,j} / h_y^2
* (independent of J, that is of \xi_2)
R* PM0 2WI WI+1
RM PM1 PM0 0.0833333333
R* MU/HY2 PM1 HT/HY
R* MU/HT2 PM1 HY/HT
* Compute \lambda_{i,j} / h_y^2 and \lambda_{i,j} / h_t^2
* (independent of J, that is of \xi_2)
R* PL0 2WI WI-1
RM PL1 PL0 0.0833333333
R* LA/HY2 PL1 HT/HY
R* LA/HT2 PL1 HY/HT
DO J 2 PY-1
ZE G(I,J) A(I,J) MU/HT2
ZE G(I,J) B(I,J) MU/HY2
ZE G(I,J) C(I,J) LA/HT2
ZE G(I,J) D(I,J) LA/HY2
ND
OBJECT BOUND
LO JNLBRNG 0.0
* Solution
*LO SOLTN(4) -1.8551D+01
*LO SOLTN(10) -7.2552D+00
*LO SOLTN(23) -6.5068D+00
*LO SOLTN(32) -6.4401D+00
*LO SOLTN(75) -6.3297D+00
*LO SOLTN(100) -6.3007D+00
*LO SOLTN(125) -6.2807D+00
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS JNLBRNGB
INDIVIDUALS
T ISQ
R U V1 1.0 V2 -1.0
F U * U
G U U + U
H U U 2.0
ENDATA