-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLOBSTERZ.SIF
10252 lines (9147 loc) · 333 KB
/
LOBSTERZ.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
***************************
* SET UP THE INITIAL DATA *
***************************
NAME LOBSTERZ
* Problem:
* ********
* This version has fixed correct model parameters and thus amounts to
* estimating the dynmaics.
* The problem is to identify parameters in a model of the voltage across a
* cell membrane in the presence of a single passive current and a single
* active current with Hodgkin-Huxley channel gating (activation of P
* independent gates and total inactivation divided into NH groups of partial
* activations with identical steady-state characteristics but different
* kinetic properties to give multi-exponential decay characteristics).
*
* The ODEs for the voltage V(t), the activation M(t) and the partial
* inactivations Hi(t) are:
*
* dV
* C --(t) = -GA * M(t)**P * H(t) * ( V(t) - EA ) - GL * ( V(t) - EL ) + I(t),
* dt
*
* dM
* --(t) = AM( V(t) ) * ( 1 - M(t) ) - BM( V(t) ) * M(t),
* dt
*
* dHi
* ---(t) = AHi( V(t) ) * ( 1 - M(t) ) - BHi( V(t) ) * M(t), (i = 1:NH)
* dt
*
* where
*
* C is the (time independent) membrane capacitance,
* GA is the (time independent) active conductance,
* GL is the (time independent) passive conductance,
* EA is the (time independent) active current reversal potential,
* EL is the (time independent) passive current reversal potential,
* I(t) is the injected current at time t,
* and where the total inactivation H(t) is the sum of the different partial
* inactivations
*
* NH
* H(t) = SUM ( Fi * Hi(t) ) + FNH+1 (all t)
* i=1
*
* and where the inactivation fractions satisfy
*
* NH+1
* 0 <= Fi <= 1 (i=1:NH) and SUM Fi = 1.
* i=1
*
* The function A*( V ) and B*( V ) are Boltzmann functions of the form
*
* 1
* A&( V ) = ---------------------------------------
* TA& * ( 1 + EXP[ ( V - UA& ) / SA& ] )
*
* and
*
* 1
* B&( V ) = ---------------------------------------
* TB& * ( 1 + EXP[ ( V - UB& ) / SB& ] )
*
*
* with & being M or Hi (i = 1:NH). Additionally, the parameters of the
* Boltzmann functions have to satisfy, for i=1:NH,
*
* TAHi = Ei * TAH, UAHi = UAH, SAHi = SAH,
*
* TBHi = Ei * TBH, UBHi = UAH, SBHi = SAH,
*
* where the scaling factors Ei are constrained by
*
* 1 = E1 < E2 < ... < ENH.
*
* This file uses NH = 2.
*
* The ODEs are discretized using a 5 steps Backward Differentiation Formula
* with constant time stepping.
*
* The objective function is to minimize the least-squares distance between
* the voltages satisfying those equations and observed voltage values for
* a number of experiments (or sweeps).
* The experimental data is for a potassium A current in a pyloric dilator
* cell of the stomatogastric ganglion of the Pacific spiny lobster.
* The problem is non-convex.
* Source:
* A. Willms, private communication, 2003.
* SIF input: Philippe Toint and Allan Willms, August 2003.
* classification QOR2-RY-16263-16243
*--------------------------------------------------------------------------
*--------------------------- Problem data ---------------------------------
*--------------------------------------------------------------------------
* Naming conventions:
* - each sweep is index by a capital letter from A to H
* - the observed voltages at sweep X at time t are OVX(t)
* - the injected currents at sweep X at time t are IX(t)
* - the voltages at sweep X at time t are VX(t)
* - the activations at sweep X at time t are MX(t)
* - the total inactivations at sweep X at time t are HX(t)
* - the first partial inactivations at sweep X at time t are PX(t)
* - the second partial inactivations at sweep X at time t are QX(t)
* - the first partial activation time constant (TAH1) is TAP
* - the second partial activation time constant (TAH2) is TAQ
* - the first partialinactivation time constant (TBH1) is TBP
* - the second partial inactivation time constant (TBH2) is TBQ
* - the inactivation fractions are F1, F2 and F3
* - the voltage ODE for sweep X at time t is EVX(t)
* - the activation ODE for sweep X at time t is EMX(t)
* - the first partial inactivation ODE for sweep X at time t is EPX(t)
* - the second partial inactivation ODE for sweep X at time t is EQX(t)
* - the constraint linking the total and partial inactivations
* for sweep X at time t is HDX(t)
* - the constraint of the sum of the inactivation fractions is SUMF
* - the relation between TAHi and TAH is DTAQ
* - the relation between TBHi and TAH is DTBQ
*--------------------------------------------------------------------------
* The number of independent activation gates
RE P 3.0
* The number of kinetically different groups of inactivation gates
IE NH 2
* The maximal violations on the voltage observations
RE UPVOLT 50.0
RE LOVOLT -50.0
* The lower and upper bounds on the model parameters
* Inverse of membrane capacitance
RE INVCMIN 0.5
RE INVCMAX 10.0
* Active conductance
RE GAMIN 0.0
RE GAMAX 10.0
* Passive conductance
RE GLMIN 0.0
RE GLMAX 2.0
* Active current reversal potential
RE EAMIN -90.0
RE EAMAX -60.0
* Passive current reversal potential
RE ELMIN -60.0
RE ELMAX -25.0
* Activation opening time constant
RE TAMMIN 0.01
RE TAMMAX 20.9
* Half activation opening voltage
RE UAMMIN -80.0
RE UAMMAX -10.0
* Activation opening slope factor
RE SAMMIN -50.0
RE SAMMAX -5.0
* Activation closing time constant
RE TBMMIN 0.01
RE TBMMAX 20.0
* Half activation closing voltage
RE UBMMIN -80.0
RE UBMMAX -10.0
* Activation closing slope factor
RE SBMMIN 5.0
RE SBMMAX 50.0
* Inactivation opening time constant
RE TAPMIN 1.0
RE TAPMAX 50.0
* Half inactivation opening voltage
RE UAHMIN -120.0
RE UAHMAX -30.0
* Inactivation opening slope factor
RE SAHMIN 5.0
RE SAHMAX 50.0
* Inactivation closing time constant
RE TBPMIN 1.0
RE TBPMAX 50.0
* Half inactivation closing voltage
RE UBHMIN -120.0
RE UBHMAX -30.0
* Inactivation closing slope factor
RE SBHMIN -50.0
RE SBHMAX -5.0
* Second inactivation time factor
RE E2MIN 1.0
RE E2MAX 20.0
* --------------------- SWEEP A ---------------------------------------------
* The length of the time step for sweep A
RE DTA 1.0
* The number of time steps for sweep A
IE NTA 156
* The injected voltages for experimental sweep A
RE IA1 0.000000
RE IA2 0.000000
RE IA3 0.000000
RE IA4 0.000000
RE IA5 0.000000
RE IA6 0.000000
RE IA7 0.000000
RE IA8 0.000000
RE IA9 0.000000
RE IA10 0.000000
RE IA11 0.000000
RE IA12 -4.500000
RE IA13 -9.000000
RE IA14 -13.500000
RE IA15 -18.000000
RE IA16 -22.500000
RE IA17 -27.000000
RE IA18 -31.500000
RE IA19 -36.000000
RE IA20 -40.500000
RE IA21 -45.000000
RE IA22 -45.000000
RE IA23 -45.000000
RE IA24 -45.000000
RE IA25 -45.000000
RE IA26 -45.000000
RE IA27 -45.000000
RE IA28 -45.000000
RE IA29 -45.000000
RE IA30 -45.000000
RE IA31 -45.000000
RE IA32 -45.000000
RE IA33 -45.000000
RE IA34 -45.000000
RE IA35 -45.000000
RE IA36 -45.000000
RE IA37 -45.000000
RE IA38 -45.000000
RE IA39 -45.000000
RE IA40 -45.000000
RE IA41 -45.000000
RE IA42 -45.000000
RE IA43 -45.000000
RE IA44 -45.000000
RE IA45 -45.000000
RE IA46 -45.000000
RE IA47 -20.500000
RE IA48 4.000000
RE IA49 28.500000
RE IA50 53.000000
RE IA51 77.500000
RE IA52 102.000000
RE IA53 126.500000
RE IA54 151.000000
RE IA55 175.500000
RE IA56 200.000000
RE IA57 200.000000
RE IA58 200.000000
RE IA59 200.000000
RE IA60 200.000000
RE IA61 200.000000
RE IA62 200.000000
RE IA63 200.000000
RE IA64 200.000000
RE IA65 200.000000
RE IA66 200.000000
RE IA67 190.000000
RE IA68 180.000000
RE IA69 170.000000
RE IA70 160.000000
RE IA71 150.000000
RE IA72 140.000000
RE IA73 130.000000
RE IA74 120.000000
RE IA75 110.000000
RE IA76 100.000000
RE IA77 90.000000
RE IA78 80.000000
RE IA79 70.000000
RE IA80 60.000000
RE IA81 50.000000
RE IA82 40.000000
RE IA83 30.000000
RE IA84 20.000000
RE IA85 10.000000
RE IA86 0.000000
RE IA87 -4.500000
RE IA88 -9.000000
RE IA89 -13.500000
RE IA90 -18.000000
RE IA91 -22.500000
RE IA92 -27.000000
RE IA93 -31.500000
RE IA94 -36.000000
RE IA95 -40.500000
RE IA96 -45.000000
RE IA97 -45.000000
RE IA98 -45.000000
RE IA99 -45.000000
RE IA100 -45.000000
RE IA101 -45.000000
RE IA102 -45.000000
RE IA103 -45.000000
RE IA104 -45.000000
RE IA105 -45.000000
RE IA106 -45.000000
RE IA107 -20.500000
RE IA108 4.000000
RE IA109 28.500000
RE IA110 53.000000
RE IA111 77.500000
RE IA112 102.000000
RE IA113 126.500000
RE IA114 151.000000
RE IA115 175.500000
RE IA116 200.000000
RE IA117 200.000000
RE IA118 200.000000
RE IA119 200.000000
RE IA120 200.000000
RE IA121 200.000000
RE IA122 200.000000
RE IA123 200.000000
RE IA124 200.000000
RE IA125 200.000000
RE IA126 200.000000
RE IA127 190.000000
RE IA128 180.000000
RE IA129 170.000000
RE IA130 160.000000
RE IA131 150.000000
RE IA132 140.000000
RE IA133 130.000000
RE IA134 120.000000
RE IA135 110.000000
RE IA136 100.000000
RE IA137 90.000000
RE IA138 80.000000
RE IA139 70.000000
RE IA140 60.000000
RE IA141 50.000000
RE IA142 40.000000
RE IA143 30.000000
RE IA144 20.000000
RE IA145 10.000000
RE IA146 0.000000
RE IA147 0.000000
RE IA148 0.000000
RE IA149 0.000000
RE IA150 0.000000
RE IA151 0.000000
RE IA152 0.000000
RE IA153 0.000000
RE IA154 0.000000
RE IA155 0.000000
RE IA156 0.000000
* The observed voltages for experimental sweep A
RE OVA1 -52.214510
RE OVA2 -52.214510
RE OVA3 -52.214510
RE OVA4 -52.214510
RE OVA5 -52.214510
RE OVA6 -52.214510
RE OVA7 -52.214510
RE OVA8 -52.214510
RE OVA9 -52.214510
RE OVA10 -52.214510
RE OVA11 -52.198476
RE OVA12 -53.863175
RE OVA13 -57.164636
RE OVA14 -61.049971
RE OVA15 -65.297709
RE OVA16 -69.866580
RE OVA17 -74.626745
RE OVA18 -79.520545
RE OVA19 -84.483686
RE OVA20 -89.457249
RE OVA21 -94.452237
RE OVA22 -97.752722
RE OVA23 -99.081012
RE OVA24 -99.619273
RE OVA25 -99.854510
RE OVA26 -99.931262
RE OVA27 -99.974211
RE OVA28 -99.987143
RE OVA29 -99.995156
RE OVA30 -99.997619
RE OVA31 -99.999107
RE OVA32 -99.999556
RE OVA33 -99.999841
RE OVA34 -99.999912
RE OVA35 -99.999973
RE OVA36 -99.999985
RE OVA37 -99.999990
RE OVA38 -100.000000
RE OVA39 -99.999997
RE OVA40 -99.999998
RE OVA41 -100.000003
RE OVA42 -100.000001
RE OVA43 -99.999995
RE OVA44 -99.999998
RE OVA45 -99.999999
RE OVA46 -100.006171
RE OVA47 -90.824210
RE OVA48 -70.842018
RE OVA49 -46.572367
RE OVA50 -24.112022
RE OVA51 -20.146698
RE OVA52 -23.217334
RE OVA53 -20.679856
RE OVA54 -16.471622
RE OVA55 -12.399642
RE OVA56 -8.240193
RE OVA57 -8.655324
RE OVA58 -9.119174
RE OVA59 -8.617252
RE OVA60 -7.871523
RE OVA61 -7.078027
RE OVA62 -6.263867
RE OVA63 -5.436312
RE OVA64 -4.595278
RE OVA65 -3.740648
RE OVA66 -2.884007
RE OVA67 -4.176699
RE OVA68 -6.026897
RE OVA69 -7.626848
RE OVA70 -9.164043
RE OVA71 -10.731145
RE OVA72 -12.355243
RE OVA73 -14.044720
RE OVA74 -15.806143
RE OVA75 -17.649292
RE OVA76 -19.587475
RE OVA77 -21.634647
RE OVA78 -23.816543
RE OVA79 -26.186898
RE OVA80 -28.745023
RE OVA81 -31.582794
RE OVA82 -34.749417
RE OVA83 -38.246238
RE OVA84 -42.153619
RE OVA85 -46.463055
RE OVA86 -51.300381
RE OVA87 -55.128505
RE OVA88 -58.147715
RE OVA89 -61.570563
RE OVA90 -65.527830
RE OVA91 -69.965539
RE OVA92 -74.685226
RE OVA93 -79.542298
RE OVA94 -84.490101
RE OVA95 -89.460165
RE OVA96 -94.440248
RE OVA97 -97.796176
RE OVA98 -99.024139
RE OVA99 -99.613201
RE OVA100 -99.835367
RE OVA101 -99.936796
RE OVA102 -99.968405
RE OVA103 -99.987848
RE OVA104 -99.994142
RE OVA105 -99.997751
RE OVA106 -99.976979
RE OVA107 -90.704073
RE OVA108 -70.793229
RE OVA109 -46.550738
RE OVA110 -23.575873
RE OVA111 -17.218868
RE OVA112 -19.734746
RE OVA113 -17.679465
RE OVA114 -13.302233
RE OVA115 -8.716607
RE OVA116 -3.930946
RE OVA117 -3.939666
RE OVA118 -4.516077
RE OVA119 -4.110003
RE OVA120 -3.353806
RE OVA121 -2.497276
RE OVA122 -1.604990
RE OVA123 -0.693065
RE OVA124 0.234594
RE OVA125 1.176023
RE OVA126 2.123527
RE OVA127 0.775004
RE OVA128 -1.400647
RE OVA129 -3.405362
RE OVA130 -5.333051
RE OVA131 -7.261003
RE OVA132 -9.217953
RE OVA133 -11.214489
RE OVA134 -13.257227
RE OVA135 -15.354182
RE OVA136 -17.518082
RE OVA137 -19.770335
RE OVA138 -22.142574
RE OVA139 -24.665990
RE OVA140 -27.374404
RE OVA141 -30.368854
RE OVA142 -33.652062
RE OVA143 -37.325296
RE OVA144 -41.413587
RE OVA145 -45.904520
RE OVA146 -51.117511
RE OVA147 -53.358307
RE OVA148 -53.130311
RE OVA149 -52.604462
RE OVA150 -52.235684
RE OVA151 -52.039051
RE OVA152 -51.967414
RE OVA153 -51.936258
RE OVA154 -51.942934
RE OVA155 -51.956853
RE OVA156 -51.970648
* --------------------- SWEEP B ---------------------------------------------
* The length of the time step for sweep B
RE DTB 1.0
* The number of time steps for sweep B
IE NTB 556
* The injected voltages for experimental sweep B
RE IB1 0.000000
RE IB2 0.000000
RE IB3 0.000000
RE IB4 0.000000
RE IB5 0.000000
RE IB6 0.000000
RE IB7 0.000000
RE IB8 0.000000
RE IB9 0.000000
RE IB10 0.000000
RE IB11 0.000000
RE IB12 -4.500000
RE IB13 -9.000000
RE IB14 -13.500000
RE IB15 -18.000000
RE IB16 -22.500000
RE IB17 -27.000000
RE IB18 -31.500000
RE IB19 -36.000000
RE IB20 -40.500000
RE IB21 -45.000000
RE IB22 -45.000000
RE IB23 -45.000000
RE IB24 -45.000000
RE IB25 -45.000000
RE IB26 -45.000000
RE IB27 -45.000000
RE IB28 -45.000000
RE IB29 -45.000000
RE IB30 -45.000000
RE IB31 -45.000000
RE IB32 -45.000000
RE IB33 -45.000000
RE IB34 -45.000000
RE IB35 -45.000000
RE IB36 -45.000000
RE IB37 -45.000000
RE IB38 -45.000000
RE IB39 -45.000000
RE IB40 -45.000000
RE IB41 -45.000000
RE IB42 -45.000000
RE IB43 -45.000000
RE IB44 -45.000000
RE IB45 -45.000000
RE IB46 -45.000000
RE IB47 -20.500000
RE IB48 4.000000
RE IB49 28.500000
RE IB50 53.000000
RE IB51 77.500000
RE IB52 102.000000
RE IB53 126.500000
RE IB54 151.000000
RE IB55 175.500000
RE IB56 200.000000
RE IB57 200.000000
RE IB58 200.000000
RE IB59 200.000000
RE IB60 200.000000
RE IB61 200.000000
RE IB62 200.000000
RE IB63 200.000000
RE IB64 200.000000
RE IB65 200.000000
RE IB66 200.000000
RE IB67 190.000000
RE IB68 180.000000
RE IB69 170.000000
RE IB70 160.000000
RE IB71 150.000000
RE IB72 140.000000
RE IB73 130.000000
RE IB74 120.000000
RE IB75 110.000000
RE IB76 100.000000
RE IB77 99.523810
RE IB78 99.047619
RE IB79 98.571429
RE IB80 98.095238
RE IB81 97.619048
RE IB82 97.142857
RE IB83 96.666667
RE IB84 96.190476
RE IB85 95.714286
RE IB86 95.238095
RE IB87 94.761905
RE IB88 94.285714
RE IB89 93.809524
RE IB90 93.333333
RE IB91 92.857143
RE IB92 92.380952
RE IB93 91.904762
RE IB94 91.428571
RE IB95 90.952381
RE IB96 90.476190
RE IB97 90.000000
RE IB98 89.523810
RE IB99 89.047619
RE IB100 88.571429
RE IB101 88.095238
RE IB102 87.619048
RE IB103 87.142857
RE IB104 86.666667
RE IB105 86.190476
RE IB106 85.714286
RE IB107 85.238095
RE IB108 84.761905
RE IB109 84.285714
RE IB110 83.809524
RE IB111 83.333333
RE IB112 82.857143
RE IB113 82.380952
RE IB114 81.904762
RE IB115 81.428571
RE IB116 80.952381
RE IB117 80.476190
RE IB118 80.000000
RE IB119 79.523810
RE IB120 79.047619
RE IB121 78.571429
RE IB122 78.095238
RE IB123 77.619048
RE IB124 77.142857
RE IB125 76.666667
RE IB126 76.190476
RE IB127 75.714286
RE IB128 75.238095
RE IB129 74.761905
RE IB130 74.285714
RE IB131 73.809524
RE IB132 73.333333
RE IB133 72.857143
RE IB134 72.380952
RE IB135 71.904762
RE IB136 71.428571
RE IB137 70.952381
RE IB138 70.476190
RE IB139 70.000000
RE IB140 69.523810
RE IB141 69.047619
RE IB142 68.571429
RE IB143 68.095238
RE IB144 67.619048
RE IB145 67.142857
RE IB146 66.666667
RE IB147 66.190476
RE IB148 65.714286
RE IB149 65.238095
RE IB150 64.761905
RE IB151 64.285714
RE IB152 63.809524
RE IB153 63.333333
RE IB154 62.857143
RE IB155 62.380952
RE IB156 61.904762
RE IB157 61.428571
RE IB158 60.952381
RE IB159 60.476190
RE IB160 60.000000
RE IB161 59.523810
RE IB162 59.047619
RE IB163 58.571429
RE IB164 58.095238
RE IB165 57.619048
RE IB166 57.142857
RE IB167 56.666667
RE IB168 56.190476
RE IB169 55.714286
RE IB170 55.238095
RE IB171 54.761905
RE IB172 54.285714
RE IB173 53.809524
RE IB174 53.333333
RE IB175 52.857143
RE IB176 52.380952
RE IB177 51.904762
RE IB178 51.428571
RE IB179 50.952381
RE IB180 50.476190
RE IB181 50.000000
RE IB182 49.523810
RE IB183 49.047619
RE IB184 48.571429
RE IB185 48.095238
RE IB186 47.619048
RE IB187 47.142857
RE IB188 46.666667
RE IB189 46.190476
RE IB190 45.714286
RE IB191 45.238095
RE IB192 44.761905
RE IB193 44.285714
RE IB194 43.809524
RE IB195 43.333333
RE IB196 42.857143
RE IB197 42.380952
RE IB198 41.904762
RE IB199 41.428571
RE IB200 40.952381
RE IB201 40.476190
RE IB202 40.000000
RE IB203 39.523810
RE IB204 39.047619
RE IB205 38.571429
RE IB206 38.095238
RE IB207 37.619048
RE IB208 37.142857
RE IB209 36.666667
RE IB210 36.190476
RE IB211 35.714286
RE IB212 35.238095
RE IB213 34.761905
RE IB214 34.285714
RE IB215 33.809524
RE IB216 33.333333
RE IB217 32.857143
RE IB218 32.380952
RE IB219 31.904762
RE IB220 31.428571
RE IB221 30.952381
RE IB222 30.476190
RE IB223 30.000000
RE IB224 29.523810
RE IB225 29.047619
RE IB226 28.571429
RE IB227 28.095238
RE IB228 27.619048
RE IB229 27.142857
RE IB230 26.666667
RE IB231 26.190476
RE IB232 25.714286
RE IB233 25.238095
RE IB234 24.761905
RE IB235 24.285714
RE IB236 23.809524
RE IB237 23.333333
RE IB238 22.857143
RE IB239 22.380952
RE IB240 21.904762
RE IB241 21.428571
RE IB242 20.952381
RE IB243 20.476190
RE IB244 20.000000
RE IB245 19.523810
RE IB246 19.047619
RE IB247 18.571429
RE IB248 18.095238
RE IB249 17.619048
RE IB250 17.142857
RE IB251 16.666667
RE IB252 16.190476
RE IB253 15.714286
RE IB254 15.238095
RE IB255 14.761905
RE IB256 14.285714
RE IB257 13.809524
RE IB258 13.333333
RE IB259 12.857143
RE IB260 12.380952
RE IB261 11.904762
RE IB262 11.428571
RE IB263 10.952381
RE IB264 10.476190
RE IB265 10.000000
RE IB266 9.523810
RE IB267 9.047619
RE IB268 8.571429
RE IB269 8.095238
RE IB270 7.619048
RE IB271 7.142857
RE IB272 6.666667
RE IB273 6.190476
RE IB274 5.714286
RE IB275 5.238095
RE IB276 4.761905
RE IB277 4.285714
RE IB278 3.809524
RE IB279 3.333333
RE IB280 2.857143
RE IB281 2.380952
RE IB282 1.904762
RE IB283 1.428571
RE IB284 0.952381
RE IB285 0.476190
RE IB286 0.000000
RE IB287 -4.500000
RE IB288 -9.000000
RE IB289 -13.500000
RE IB290 -18.000000
RE IB291 -22.500000
RE IB292 -27.000000
RE IB293 -31.500000
RE IB294 -36.000000
RE IB295 -40.500000
RE IB296 -45.000000
RE IB297 -45.000000
RE IB298 -45.000000
RE IB299 -45.000000
RE IB300 -45.000000
RE IB301 -45.000000
RE IB302 -45.000000
RE IB303 -45.000000
RE IB304 -45.000000
RE IB305 -45.000000
RE IB306 -45.000000
RE IB307 -20.500000
RE IB308 4.000000
RE IB309 28.500000
RE IB310 53.000000
RE IB311 77.500000
RE IB312 102.000000
RE IB313 126.500000
RE IB314 151.000000
RE IB315 175.500000
RE IB316 200.000000
RE IB317 200.000000
RE IB318 200.000000
RE IB319 200.000000
RE IB320 200.000000
RE IB321 200.000000
RE IB322 200.000000
RE IB323 200.000000
RE IB324 200.000000
RE IB325 200.000000
RE IB326 200.000000
RE IB327 190.000000
RE IB328 180.000000
RE IB329 170.000000
RE IB330 160.000000
RE IB331 150.000000
RE IB332 140.000000
RE IB333 130.000000
RE IB334 120.000000
RE IB335 110.000000
RE IB336 100.000000
RE IB337 99.523810
RE IB338 99.047619
RE IB339 98.571429
RE IB340 98.095238
RE IB341 97.619048
RE IB342 97.142857
RE IB343 96.666667
RE IB344 96.190476
RE IB345 95.714286
RE IB346 95.238095
RE IB347 94.761905
RE IB348 94.285714
RE IB349 93.809524
RE IB350 93.333333
RE IB351 92.857143
RE IB352 92.380952
RE IB353 91.904762
RE IB354 91.428571
RE IB355 90.952381
RE IB356 90.476190
RE IB357 90.000000
RE IB358 89.523810
RE IB359 89.047619
RE IB360 88.571429
RE IB361 88.095238
RE IB362 87.619048
RE IB363 87.142857
RE IB364 86.666667
RE IB365 86.190476
RE IB366 85.714286
RE IB367 85.238095
RE IB368 84.761905
RE IB369 84.285714
RE IB370 83.809524
RE IB371 83.333333
RE IB372 82.857143
RE IB373 82.380952
RE IB374 81.904762
RE IB375 81.428571
RE IB376 80.952381
RE IB377 80.476190
RE IB378 80.000000
RE IB379 79.523810
RE IB380 79.047619
RE IB381 78.571429
RE IB382 78.095238
RE IB383 77.619048
RE IB384 77.142857
RE IB385 76.666667
RE IB386 76.190476
RE IB387 75.714286
RE IB388 75.238095
RE IB389 74.761905
RE IB390 74.285714
RE IB391 73.809524
RE IB392 73.333333
RE IB393 72.857143
RE IB394 72.380952
RE IB395 71.904762
RE IB396 71.428571
RE IB397 70.952381
RE IB398 70.476190
RE IB399 70.000000
RE IB400 69.523810
RE IB401 69.047619
RE IB402 68.571429
RE IB403 68.095238
RE IB404 67.619048
RE IB405 67.142857
RE IB406 66.666667
RE IB407 66.190476
RE IB408 65.714286
RE IB409 65.238095
RE IB410 64.761905
RE IB411 64.285714
RE IB412 63.809524
RE IB413 63.333333
RE IB414 62.857143
RE IB415 62.380952
RE IB416 61.904762
RE IB417 61.428571
RE IB418 60.952381
RE IB419 60.476190
RE IB420 60.000000