-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLUBRIFC.SIF
394 lines (303 loc) · 8.99 KB
/
LUBRIFC.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
***************************
* SET UP THE INITIAL DATA *
***************************
NAME LUBRIFC
* Problem :
* *********
* Corrected version of LUBRIF which contained an error
* in the definition of the Reynold's equation (ELEMENT USES)
* mixing H & P, see line 298ff below (or search for ***).
* Fix by: Sven Leyffer, U. Dundee, September 2000
* The elastodynamic lubrification problem by Kostreva.
* Source:
* M.M. Kostreva,
* "Elasto-hydrodynamic lubrification: a non-linear
* complementarity problem",
* International Journal for Numerical Methods in Fluids,
* 4: 377-397, 1984.
* This problem is problem #5 in More's test set.
* SIF input: Ph. Toint, June 1990.
* classification QOR2-MN-V-V
* Number of discretized points per unit length
*IE NN 10 $-PARAMETER n = 151 original value
*IE NN 50 $-PARAMETER n = 751
IE NN 250 $-PARAMETER n = 3751
* Dimensionless pressure viscosity coefficient
RE ALPHA 1.838
* Dimensionless model parameter
RE LAMBDA 1.642
* Inlet point (do not change this)
RE XA -3.0
* Point far downstream (do not change this)
RE XF 2.0
* Number of discretized points -1
* ( for an interval of length XF - XA = 5.0 = 2.0 - (-3.0) )
IM N NN 5
* Constants
IE 0 0
IE 1 1
IE 2 2
IE 3 3
IE 4 4
RE PI 3.1415926535
* Computed parameters
IM 2N N 2
IA 2N-2 2N -2
IA 2N-1 2N -1
IA 2N+2 2N 2
RM -XA XA -1.0
R+ LEN XF -XA
RD 1/PI PI 1.0
RM 1/2PI 1/PI 0.5
RI RN N
RD 1/N RN 1.0
R* DX LEN 1/N
RD 1/DX DX 1.0
R* L/DX LAMBDA 1/DX
RM -L/DX L/DX -1.0
R* 1/DX2 1/DX 1/DX
RM -1/DX2 1/DX2 -1.0
R* DX/PI DX 1/PI
RM 2DX/PI DX/PI 2.0
RM DX/2 DX 0.5
VARIABLES
K
* Pressures
DO I 0 2N
DI I 2
X P(I)
ND
* Film thickness
DO J 1 2N-1
DI J 2
X H(J)
ND
* Discretized Reynolds operator values
DO I 2 2N-2
DI I 2
X R(I)
ND
GROUPS
* R(0) = 0
DO I 2 2N-2
DI I 2
ZE R(0) P(I) 2DX/PI
ND
ZE R(0) P(2N) DX/PI
* Complementarity equations: SUM_i p(i) * R(i) = 0
XN COMPL
* Definition of the R(i) via the Reynolds equation
DO I 2 2N-2
DI I 2
IA I-1 I -1
IA I+1 I 1
ZE DR(I) H(I+1) L/DX
ZE DR(I) H(I-1) -L/DX
XE DR(I) R(I) -1.0
ND
* Definition of the h(j)
* (uses integration by parts to avoid weak kernel singularity)
DO J 1 2N-1
DI J 2
IM -J J -1
XE DH(J) K 1.0 H(J) -1.0
DO I 2 2N
AE C(I) 0.0
OD I
RI RI-J -J
R* I-JDX RI-J DX/2
R( ALN ABS I-JDX
R( LN LOG ALN
R* T1 I-JDX LN
R* COEFF T1 1/2PI
A+ C(2) C(2) COEFF
IA I-J -J 2
RI RI-J I-J
R* I-JDX RI-J DX/2
R( ALN ABS I-JDX
R( LN LOG ALN
R* T1 I-JDX LN
R* COEFF T1 1/PI
A+ C(4) C(4) COEFF
DO I 4 2N-2
DI I 2
IA I-2 I -2
IA I+2 I 2
I+ I-J I -J
RI RI-J I-J
R* I-JDX RI-J DX/2
R( ALN ABS I-JDX
R( LN LOG ALN
R* T1 I-JDX LN
R* COEFF T1 1/PI
A+ C(I+2) C(I+2) COEFF
RM -COEFF COEFF -1.0
A+ C(I-2) C(I-2) -COEFF
OD I
I+ I-J 2N -J
RI RI-J I-J
R* I-JDX RI-J DX/2
R( ALN ABS I-JDX
R( LN LOG ALN
R* T1 I-JDX LN
R* COEFF T1 1/2PI
RM -COEFF COEFF -1.0
A+ C(2N-2) C(2N-2) -COEFF
DO I 2 2N-2
DI I 2
ZE DH(J) P(I) C(I)
ND
CONSTANTS
* R(0)
X LUBRIFC R(0) 1.0
* Definition of h(j)
DO J 1 2N-1
DI J 2
RI RJ J
R* JDX RJ DX/2
R+ XJ XA JDX
R* XJSQ XJ XJ
RA XJSQ+1 XJSQ 1.0
AM RHS XJSQ+1 -1.0
Z LUBRIFC DH(J) RHS
ND
BOUNDS
XR LUBRIFC K
DO I 2 2N-2
DI I 2
XU LUBRIFC P(I) 3.0
XL LUBRIFC P(I) 0.0
ND
DO I 1 2N-1
DI I 2
XR LUBRIFC H(I)
ND
XX LUBRIFC P(0) 0.0
XX LUBRIFC P(2N) 0.0
START POINT
XV LUBRIFC 'DEFAULT' 0.0
I+ 2NN NN NN
IM 4NN NN 4
DO I 2 4NN
DI I 2
RI RI I
R* IDX RI DX/2
R+ XI XA IDX
RM LIN XI 0.02
RA PI0 LIN 0.06
Z LUBRIFC P(I) PI0
ND
IA 4NN+2 4NN 2
IM 8NN NN 8
DO I 4NN+2 8NN
DI I 2
RI RI I
R* IDX RI DX/2
R+ XI XA IDX
R* XISQ XI XI
RM -XISQ XISQ -1.0
RA 1-XISQ -XISQ 1.0
R( PI0 SQRT 1-XISQ
Z LUBRIFC P(I) PI0
ND
IA 8NN+2 8NN 2
DO I 8NN+2 2N
DI I 2
X LUBRIFC P(I) 0.0
ND
DO J 1 2N-1
DI J 2
RI RJ J
R* JDX RJ DX/2
R+ XJ XA JDX
R* XJSQ XJ XJ
Z LUBRIFC H(J) XJSQ
ND
ELEMENT TYPE
EV REY PA PB
EV REY H
EP REY A
EV 2PR P R
ELEMENT USES
* Elements for the Reynolds equations
DO J 1 2N-1
DI J 2
IA I+ J 1
IA I- J -1
XT ER(J) REY
ZV ER(J) PA P(I-)
*** mistake in original LUBRIF.SIF: P(I+) & H(J) are mixed up
*ZV ER(J) H P(I+)
*ZV ER(J) PB H(J)
*** corrected version below
ZV ER(J) H H(J)
ZV ER(J) PB P(I+)
ZP ER(J) A ALPHA
ND
* Elements for the complementarity conditions
DO I 2 2N-2
DI I 2
XT EC(I) 2PR
ZV EC(I) P P(I)
ZV EC(I) R R(I)
ND
GROUP USES
* Complementarity
DO I 2 2N-2
DI I 2
XE COMPL EC(I)
ND
* Reynolds equations
DO I 2 2N-2
DI I 2
IA I-1 I -1
IA I+1 I 1
ZE DR(I) ER(I-1) 1/DX2
ZE DR(I) ER(I+1) -1/DX2
ND
OBJECT BOUND
LO LUBRIFC 0.0
* Solution
*LO SOLTN 0.0
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS LUBRIFC
TEMPORARIES
R PAMPB
R HCB
R HSQ
R T1
R T2
R EARG
R E
R HA
M EXP
INDIVIDUALS
T 2PR
F P * R
G P R
G R P
H P R 1.0
T REY
A HA - 0.5 * A
A EARG HA * ( PA + PB )
A E EXP( EARG )
A PAMPB PA - PB
A T1 PAMPB * HA + 1.0
A T2 PAMPB * HA - 1.0
A HSQ H * H
A HCB HSQ * H
F PAMPB * HCB * E
G PA T1 * HCB * E
G PB T2 * HCB * E
G H 3.0 * PAMPB * HSQ * E
H PA PA HCB * E * HA * ( T1 + 1.0)
H PA PB HCB * E * HA * ( T1 - 1.0)
H PA H 3.0 * T1 * HSQ * E
H PB PB HCB * E * HA * ( T2 - 1.0)
H PB H 3.0 * T2 * HSQ * E
H H H 6.0 * H * PAMPB * E
ENDATA