-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLUKVLE1.SIF
207 lines (153 loc) · 4.11 KB
/
LUKVLE1.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
***************************
* SET UP THE INITIAL DATA *
***************************
NAME LUKVLE1
* Problem :
* *********
* Source: Problem 5.1, the chained Rosenbrock function with
* simplified trigonometric exponential constraints,
* due to L. Luksan and J. Vlcek,
* "Sparse and partially separable test problems for
* unconstrained and equality constrained optimization",
* Technical Report 767, Inst. Computer Science, Academy of Sciences
* of the Czech Republic, 182 07 Prague, Czech Republic, 1999
* SIF input: Nick Gould, April 2001
* classification OOR2-AY-V-V
* some useful parameters, including N, the number of variables.
*IE N 100 $-PARAMETER
*IE N 1000 $-PARAMETER
IE N 10000 $-PARAMETER
*IE N 100000 $-PARAMETER
* other useful parameters
IE 1 1
IE 2 2
IA N-1 N -1
IA N-2 N -2
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
DO I 1 N-1
IA I+1 I 1
XN Q(I) 'SCALE' 0.01
XN Q(I) X(I+1) -1.0
XN L(I) X(I) 1.0
ND
DO K 1 N-2
IA K+1 K 1
IA K+2 K 2
XE C(K) X(K+2) 2.0 X(K+1) 4.0
ND
CONSTANTS
DO I 1 N-1
X RHS L(I) 1.0
ND
DO K 1 N-2
X RHS C(K) 8.0
ND
BOUNDS
FR LUKVLE1 'DEFAULT'
START POINT
DO I 1 N
DI I 2
XV LUKVLE1 X(I) -1.2
ND
DO I 2 N
DI I 2
XV LUKVLE1 X(I) 1.0
ND
ELEMENT TYPE
EV SQR V
EV CUBE V
EV XEXP X1 X2
EV SINASINB X1 X2
ELEMENT USES
DO I 1 N-1
XT Q(I) SQR
ZV Q(I) V X(I)
ND
DO K 1 N-2
IA K+1 K 1
IA K+2 K 2
XT CA(K) CUBE
ZV CA(K) V X(K+1)
XT CB(K) SINASINB
ZV CB(K) X1 X(K+1)
ZV CB(K) X2 X(K+2)
XT CC(K) XEXP
ZV CC(K) X1 X(K)
ZV CC(K) X2 X(K+1)
ND
GROUP TYPE
GV L2 GVAR
GROUP USES
DO I 1 N-1
XT Q(I) L2
XE Q(I) Q(I)
XT L(I) L2
ND
DO K 1 N-2
XE C(K) CA(K) 3.0 CB(K)
XE C(K) CC(K) -1.0
ND
OBJECT BOUND
LO LUKVLE1 0.0
* Solution
*LO SOLTN 0.0
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS LUKVLE1
TEMPORARIES
R EXPX
R XEXPX
R SINA
R SINB
R COSA
R COSB
M EXP
M SIN
M COS
INDIVIDUALS
T SQR
F V ** 2
G V 2.0 * V
H V V 2.0
T XEXP
A EXPX EXP( X1 - X2 )
A XEXPX X1 * EXPX
F XEXPX
G X1 EXPX + XEXPX
G X2 - XEXPX
H X1 X1 2.0 * EXPX + XEXPX
H X1 X2 - EXPX - XEXPX
H X2 X2 XEXPX
T SINASINB
A SINA SIN( X1 - X2 )
A SINB SIN( X1 + X2 )
A COSA COS( X1 - X2 )
A COSB COS( X1 + X2 )
F SINA * SINB
G X1 SINA * COSB + COSA * SINB
G X2 SINA * COSB - COSA * SINB
H X1 X1 2.0 * ( COSA * COSB - SINA * SINB )
H X2 X2 - 2.0 * ( COSA * COSB + SINA * SINB )
T CUBE
F V ** 3
G V 3.0 * V ** 2
H V V 6.0 * V
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS LUKVLE1
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA