-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLUKVLE6.SIF
325 lines (254 loc) · 7.78 KB
/
LUKVLE6.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
***************************
* SET UP THE INITIAL DATA *
***************************
NAME LUKVLE6
* Problem :
* *********
* Source: Problem 5.6, Generalized Broyden banded function with
* exponential constraints, due to L. Luksan and J. Vlcek,
* "Sparse and partially separable test problems for
* unconstrained and equality constrained optimization",
* Technical Report 767, Inst. Computer Science, Academy of Sciences
* of the Czech Republic, 182 07 Prague, Czech Republic, 1999
* SIF input: Nick Gould, April 2001
* classification OOR2-AY-V-V
* some useful parameters, including N, the number of variables.
*IE N 99 $-PARAMETER
*IE N 999 $-PARAMETER
IE N 9999 $-PARAMETER
*IE N 99999 $-PARAMETER
* other useful parameters
IE 0 0
IE 1 1
IE 2 2
IE 3 3
IE 4 4
IE 5 5
IE 6 6
I/ N/2 N 2
IA N+1 N 1
IA N-4 N -4
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
DO I 1 N
IA I+1 I 1
IA I-5 I -5
XN OBJ(I) X(I) 2.0
* Now for the fun part: Find MAX(1,I-5) and MIN(I+1,N)
I= A I-5
I= B 1
* this is how we find max(a,b) !!
* first add |a| + |b| to both
RI A A
R( ABSA ABS A
IR ABSA ABSA
RI B B
R( ABSB ABS B
IR ABSB ABSB
I+ ABSA+B ABSA ABSB
I+ A A ABSA+B
I+ B B ABSA+B
* only one of [a/b] and [b/a] is nonzero (unless a=b)
I/ A/B A B
I/ B/A B A
* form max(a,b) = (a.[a/b] + b.[b/a]) / ([a/b] + [b/a])
I+ SUM A/B B/A
I* A A A/B
I* B B B/A
I+ MAXA,B A B
I/ MAXA,B MAXA,B SUM
* subtract |a| + |b| to find the required minimum
I- MAXA,B MAXA,B ABSA+B
I= MAXI-5,1 MAXA,B
I= A I+1
I= B N
* this is how we find min(a,b) !!
* first set a <- - a and b <- - b
IM A A -1
IM B B -1
* now add |a| + |b| to both
RI A A
R( ABSA ABS A
IR ABSA ABSA
RI B B
R( ABSB ABS B
IR ABSB ABSB
I+ ABSA+B ABSA ABSB
I+ A A ABSA+B
I+ B B ABSA+B
* only one of [a/b] and [b/a] is nonzero (unless a=b)
I/ A/B A B
I/ B/A B A
* form max(a,b) = (a.[a/b] + b.[b/a]) / ([a/b] + [b/a])
I+ SUM A/B B/A
I* A A A/B
I* B B B/A
I+ MAXA,B A B
I/ MAXA,B MAXA,B SUM
* subtract |a| + |b| and negate to find the required minimum
I- MINA,B ABSA+B MAXA,B
I= MINI+1,N MINA,B
DO J MAXI-5,1 MINI+1,N
XN OBJ(I) X(J) 1.0
ND
DO K 1 N/2
IM 2K K 2
XE C(K) X(2K) 4.0
ND
CONSTANTS
DO I 1 N
X RHS OBJ(I) -1.0
ND
DO K 1 N/2
X RHS C(K) 3.0
ND
BOUNDS
FR BND 'DEFAULT'
START POINT
DO I 1 N
XV LUKVLE9 X(I) 3.0
ND
ELEMENT TYPE
EV SQR V
EV CUBE V
EV XEXP VM VP
EV XEXP V
IV XEXP U W
ELEMENT USES
DO I 1 N
XT S(I) SQR
ZV S(I) V X(I)
XT C(I) CUBE
ZV C(I) V X(I)
ND
DO K 1 N/2
IM 2K K 2
IA 2K-1 2K -1
IA 2K+1 2K 1
XT P(K) XEXP
ZV P(K) VM X(2K-1)
ZV P(K) V X(2K)
ZV P(K) VP X(2K+1)
ND
GROUP TYPE
GV L7/3 GVAR
GROUP USES
DO I 1 N
IA I+1 I 1
IA I-5 I -5
XT OBJ(I) L7/3
XE OBJ(I) C(I) 5.0
* Once again, find MAX(1,I-5) and MIN(I+1,N)
I= A I-5
I= B 1
* this is how we find max(a,b) !!
* first add |a| + |b| to both
RI A A
R( ABSA ABS A
IR ABSA ABSA
RI B B
R( ABSB ABS B
IR ABSB ABSB
I+ ABSA+B ABSA ABSB
I+ A A ABSA+B
I+ B B ABSA+B
* only one of [a/b] and [b/a] is nonzero (unless a=b)
I/ A/B A B
I/ B/A B A
* form max(a,b) = (a.[a/b] + b.[b/a]) / ([a/b] + [b/a])
I+ SUM A/B B/A
I* A A A/B
I* B B B/A
I+ MAXA,B A B
I/ MAXA,B MAXA,B SUM
* subtract |a| + |b| to find the required minimum
I- MAXA,B MAXA,B ABSA+B
I= MAXI-5,1 MAXA,B
I= A I+1
I= B N
* this is how we find min(a,b) !!
* first set a <- - a and b <- - b
IM A A -1
IM B B -1
* now add |a| + |b| to both
RI A A
R( ABSA ABS A
IR ABSA ABSA
RI B B
R( ABSB ABS B
IR ABSB ABSB
I+ ABSA+B ABSA ABSB
I+ A A ABSA+B
I+ B B ABSA+B
* only one of [a/b] and [b/a] is nonzero (unless a=b)
I/ A/B A B
I/ B/A B A
* form max(a,b) = (a.[a/b] + b.[b/a]) / ([a/b] + [b/a])
I+ SUM A/B B/A
I* A A A/B
I* B B B/A
I+ MAXA,B A B
I/ MAXA,B MAXA,B SUM
* subtract |a| + |b| and negate to find the required minimum
I- MINA,B ABSA+B MAXA,B
I= MINI+1,N MINA,B
DO J MAXI-5,1 MINI+1,N
XE OBJ(I) S(J) 1.0
ND
DO K 1 N/2
XE C(K) P(K) -1.0
ND
OBJECT BOUND
LO LUKVLE6 0.0
* Solution
*LO SOLTN 6.26382E+04
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS LUKVLE6
TEMPORARIES
R EXPW
R UEXPW
M EXP
INDIVIDUALS
T SQR
F V * V
G V 2.0 * V
H V V 2.0
T CUBE
F V ** 3
G V 3.0 * V ** 2
H V V 6.0 * V
T XEXP
R U VM 1.0 VP -1.0
R W VM 1.0 VP -1.0
R W V -1.0
A EXPW EXP( W )
A UEXPW U * EXPW
F UEXPW
G U EXPW
G W UEXPW
H U W EXPW
H W W UEXPW
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS LUKVLE6
TEMPORARIES
R Z
M ABS
M SIGN
INDIVIDUALS
T L7/3
A Z ABS( GVAR )
F Z**(7.0/3.0)
G 7.0 * SIGN( Z**(4.0/3.0), GVAR ) / 3.0
H 28.0 * Z**(1.0/3.0) / 9.0
ENDATA