-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLUKVLI3.SIF
216 lines (161 loc) · 4.48 KB
/
LUKVLI3.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
***************************
* SET UP THE INITIAL DATA *
***************************
NAME LUKVLI3
* Problem :
* *********
* Source: Problem 5.3, the chained Powell singular function with
* simplified trigonometric exponential constraints,
* due to L. Luksan and J. Vlcek,
* "Sparse and partially separable test problems for
* unconstrained and equality constrained optimization",
* Technical Report 767, Inst. Computer Science, Academy of Sciences
* of the Czech Republic, 182 07 Prague, Czech Republic, 1999
* Equality constraints changed to inequalities
* SIF input: Nick Gould, April 2001
* classification OOR2-AY-V-V
* some useful parameters, including N, the number of variables.
*IE N 100 $-PARAMETER
*IE N 1000 $-PARAMETER
IE N 10000 $-PARAMETER
*IE N 100000 $-PARAMETER
* other useful parameters
IE 1 1
IE 2 2
IE 3 3
IE 4 4
IE 5 5
IE 6 6
I/ N/2 N 2
IA N/2-1 N/2 -1
IA N-1 N -1
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
DO I 1 N/2-1
IM 2I I 2
IA 2I-1 2I -1
IA 2I+1 2I 1
IA 2I+2 2I 2
XN OA(I) X(2I-1) 1.0 X(2I) 10.0
XN OB(I) X(2I+1) 1.0 X(2I+2) -1.0
XN OC(I) X(2I) 1.0 X(2I+1) -2.0
XN OD(I) X(2I-1) 1.0 X(2I+2) -1.0
ND
XG C1 X(2) 2.0
XL C2 X(N-1) 4.0
CONSTANTS
X RHS C1 5.0
X RHS C2 3.0
BOUNDS
FR LUKVLI3 'DEFAULT'
START POINT
DO I 1 N
DI I 4
XV LUKVLI3 X(I) 3.0
ND
DO I 2 N
DI I 4
XV LUKVLI3 X(I) -1.0
ND
DO I 3 N
DI I 4
XV LUKVLI3 X(I) 0.0
ND
DO I 4 N
DI I 4
XV LUKVLI3 X(I) 1.0
ND
ELEMENT TYPE
EV CUBE V
EV XEXP X1 X2
EV SINASINB X1 X2
ELEMENT USES
XT C11 CUBE
ZV C11 V X(1)
XT C12 SINASINB
ZV C12 X1 X(1)
ZV C12 X2 X(2)
XT C21 XEXP
ZV C21 X1 X(N-1)
ZV C21 X2 X(N)
GROUP TYPE
GV L2P GVAR
GP L2P P
GV L4P GVAR
GP L4P P
GROUP USES
DO I 1 N/2-1
XT OA(I) L2P
XP OA(I) P 1.0
XT OB(I) L2P
XP OB(I) P 5.0
XT OC(I) L4P
XP OC(I) P 1.0
XT OD(I) L4P
XP OD(I) P 10.0
ND
XE C1 C11 3.0 C12
XE C2 C21 -1.0
OBJECT BOUND
LO LUKVLI3 0.0
* Solution
*LO SOLTN 1.15775E+01
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS LUKVLI3
TEMPORARIES
R EXPX
R XEXPX
R SINA
R SINB
R COSA
R COSB
M EXP
M SIN
M COS
INDIVIDUALS
T XEXP
A EXPX EXP( X1 - X2 )
A XEXPX X1 * EXPX
F XEXPX
G X1 EXPX + XEXPX
G X2 - XEXPX
H X1 X1 2.0 * EXPX + XEXPX
H X1 X2 - EXPX - XEXPX
H X2 X2 XEXPX
T SINASINB
A SINA SIN( X1 - X2 )
A SINB SIN( X1 + X2 )
A COSA COS( X1 - X2 )
A COSB COS( X1 + X2 )
F SINA * SINB
G X1 SINA * COSB + COSA * SINB
G X2 SINA * COSB - COSA * SINB
H X1 X1 2.0 * ( COSA * COSB - SINA * SINB )
H X2 X2 - 2.0 * ( COSA * COSB + SINA * SINB )
T CUBE
F V ** 3
G V 3.0 * V ** 2
H V V 6.0 * V
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS LUKVLI3
INDIVIDUALS
T L2P
F P * GVAR * GVAR
G 2.0 * P * GVAR
H 2.0 * P
T L4P
F P * GVAR ** 4
G 4.0 * P * GVAR ** 3
H 12.0 * P * GVAR ** 2
ENDATA