-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLUKVLI7.SIF
201 lines (149 loc) · 4.34 KB
/
LUKVLI7.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
***************************
* SET UP THE INITIAL DATA *
***************************
NAME LUKVLI7
* Problem :
* *********
* Source: Problem 5.7, A trigonometric tridiagonal function with
* simplified five-diagonal constraints, due to L. Luksan and J. Vlcek,
* "Sparse and partially separable test problems for
* unconstrained and equality constrained optimization",
* Technical Report 767, Inst. Computer Science, Academy of Sciences
* of the Czech Republic, 182 07 Prague, Czech Republic, 1999
* Equality constraints changed to inequalities
* SIF input: Nick Gould, April 2001
* classification OOR2-AY-V-V
* some useful parameters, including N, the number of variables.
*IE N 100 $-PARAMETER
*IE N 1000 $-PARAMETER
IE N 10000 $-PARAMETER
*IE N 100000 $-PARAMETER
* other useful parameters
IE 1 1
IE 2 2
IE 3 3
IE 4 4
IA N-1 N -1
IA N-2 N -2
IA N-3 N -3
RI N N
RM -N N -1.0
RA N+1 N 1.0
R* N.N+1 N N+1
RM -N.N+1/2 N.N+1 -0.5
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
XN OBJ
XL C(1) X(1) 4.0 X(2) 1.0
XL C(2) X(2) 6.0 X(3) 1.0
XL C(3) X(N-1) 6.0 X(N-3) -1.0
XL C(4) X(N) 2.0 X(N-2) -1.0
CONSTANTS
Z RHS OBJ -N.N+1/2
X RHS C(2) 2.0
X RHS C(3) 2.0
BOUNDS
FR BND 'DEFAULT'
START POINT
DO I 1 N
XV LUKVLI7 X(I) 1.0
ND
ELEMENT TYPE
EV SIN V
EV COS V
EV SQR V
EV CUBEP V W
ELEMENT USES
DO I 1 N
XT SI(I) SIN
ZV SI(I) V X(I)
XT CO(I) COS
ZV CO(I) V X(I)
ND
XT C1(1) SQR
ZV C1(1) V X(2)
XT C2(1) SQR
ZV C2(1) V X(3)
XT C1(2) CUBEP
ZV C1(2) V X(2)
ZV C1(2) W X(1)
XT C2(2) SQR
ZV C2(2) V X(3)
XT C3(2) SQR
ZV C3(2) V X(4)
XT C1(3) CUBEP
ZV C1(3) V X(N-1)
ZV C1(3) W X(N-2)
XT C2(3) SQR
ZV C2(3) V X(N)
XT C3(3) SQR
ZV C3(3) V X(N-2)
XT C1(4) CUBEP
ZV C1(4) V X(N)
ZV C1(4) W X(N-1)
XT C2(4) SQR
ZV C2(4) V X(N-1)
GROUP USES
XE OBJ CO(1) -1.0
XE OBJ SI(2) -1.0
DO I 2 N-1
IA I+1 I 1
IA I-1 I -1
RI I I
RM -I I -1.0
ZE OBJ CO(I) -I
ZE OBJ SI(I-1) I
ZE OBJ SI(I+1) -I
ND
ZE OBJ CO(N) -N
ZE OBJ SI(N-1) N
XE C(1) C1(1) -4.0
XE C(1) C2(1) -1.0
XE C(2) C1(2) 8.0
XE C(2) C2(2) -4.0
XE C(2) C3(2) -1.0
XE C(3) C1(3) 8.0
XE C(3) C2(3) -4.0
XE C(3) C3(3) 1.0
XE C(4) C1(4) 8.0
XE C(4) C2(4) 1.0
OBJECT BOUND
LO LUKVLI7 0.0
* Solution
*LO SOLTN -2.2754E+02
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS LUKVLI7
TEMPORARIES
M SIN
M COS
R SINV
R COSV
INDIVIDUALS
T SIN
A SINV SIN( V )
F SINV
G V COS( V )
H V V - SINV
T COS
A COSV COS( V )
F COSV
G V - SIN( V )
H V V - COSV
T SQR
F V * V
G V 2.0 * V
H V V 2.0
T CUBEP
F V ** 3 - V * W
G V 3.0 * V ** 2 - W
G W - V
H V V 6.0 * V
H V W - 1.0
ENDATA