-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMETHANOL.SIF
733 lines (595 loc) · 19.8 KB
/
METHANOL.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
***************************
* SET UP THE INITIAL DATA *
***************************
NAME METHANOL
* Problem :
* *********
* Determine the reaction coefficients for the conversion of methanol into
* various hydrocarbons. The nonlinear model that describes the process is
* y_1' = - (2 theta_2 + theta_3 + theta_4 - theta_1 y_2 / d ) y_1
* y_2' = theta_3 y_1 + theta_1 y_1 ( theta_1 y_1 - y_2 ) / d
* y_3' = theta_4 y_1 + theta_1 y_1 ( theta_5 y_1 + y_2 ) / d
* where d = (theta_2 + theta_5) y_1 + y_2 and the theta_i are positive,
* with given initial conditions. The problem is to minimize
* sum{i=1,16} || y(tau_i,theta) - z_i||^2
* where the z_i are concentration measurements for y at times tau_i (i=1,16)
* This is problem 13 in the COPS (Version 2) collection of
* E. Dolan and J. More'
* see "Benchmarking Optimization Software with COPS"
* Argonne National Labs Technical Report ANL/MCS-246 (2000)
* SIF input: Nick Gould, November 2000
* classification OOR2-AN-V-V
* The number of differential equations
IE NE 3
* The number of subintervals
*IE NH 50 $-PARAMETER
*IE NH 100 $-PARAMETER
*IE NH 200 $-PARAMETER
IE NH 400 $-PARAMETER
* The number of ODE parameters
IE NP 5
* The number of measurements
IE NM 17
* The number of collocation points
*IE NC 1 $-PARAMETER
*IE NC 2 $-PARAMETER
IE NC 3 $-PARAMETER
*IE NC 4 $-PARAMETER
* roots of NC-th degree Legendre polynomial
*RE RHO1 0.5 $-PARAMETER NC = 1
*RE RHO1 0.7886751346 $-PARAMETER NC = 2
RE RHO1 0.5 $-PARAMETER NC = 3
*RE RHO1 0.0694318442 $-PARAMETER NC = 4
*RE RHO2 0.2113248654 $-PARAMETER NC = 2
RE RHO2 0.8872983346 $-PARAMETER NC = 3
*RE RHO2 0.3300094782 $-PARAMETER NC = 4
RE RHO3 0.1127016654 $-PARAMETER NC = 3
*RE RHO3 0.6699905218 $-PARAMETER NC = 4
*RE RHO4 0.9305681558 $-PARAMETER NC = 4
* times at which observations made
RE TAU1 0.0
RE TAU2 0.050
RE TAU3 0.065
RE TAU4 0.080
RE TAU5 0.123
RE TAU6 0.233
RE TAU7 0.273
RE TAU8 0.354
RE TAU9 0.397
RE TAU10 0.418
RE TAU11 0.502
RE TAU12 0.553
RE TAU13 0.681
RE TAU14 0.750
RE TAU15 0.916
RE TAU16 0.937
RE TAU17 1.122
* The ODE is defined in [0,TF]
A= TF TAU(NM)
* The uniform interval length
RI RNH NH
R/ H TF RNH
* Concentrations
RE Z1,1 1.0000
RE Z2,1 0.7085
RE Z3,1 0.5971
RE Z4,1 0.5537
RE Z5,1 0.3684
RE Z6,1 0.1712
RE Z7,1 0.1198
RE Z8,1 0.0747
RE Z9,1 0.0529
RE Z10,1 0.0415
RE Z11,1 0.0261
RE Z12,1 0.0208
RE Z13,1 0.0085
RE Z14,1 0.0053
RE Z15,1 0.0019
RE Z16,1 0.0018
RE Z17,1 0.0006
RE Z1,2 0.0
RE Z2,2 0.1621
RE Z3,2 0.1855
RE Z4,2 0.1989
RE Z5,2 0.2845
RE Z6,2 0.3491
RE Z7,2 0.3098
RE Z8,2 0.3576
RE Z9,2 0.3347
RE Z10,2 0.3388
RE Z11,2 0.3557
RE Z12,2 0.3483
RE Z13,2 0.3836
RE Z14,2 0.3611
RE Z15,2 0.3609
RE Z16,2 0.3485
RE Z17,2 0.3698
RE Z1,3 0.0
RE Z2,3 0.0811
RE Z3,3 0.0965
RE Z4,3 0.1198
RE Z5,3 0.1535
RE Z6,3 0.2097
RE Z7,3 0.2628
RE Z8,3 0.2467
RE Z9,3 0.2884
RE Z10,3 0.2757
RE Z11,3 0.3167
RE Z12,3 0.2954
RE Z13,3 0.2950
RE Z14,3 0.2937
RE Z15,3 0.2831
RE Z16,3 0.2846
RE Z17,3 0.2899
* ODE initial conditions
RE BC1 1.0
RE BC2 0.0
RE BC3 0.0
* Other useful values
IE 1 1
IE 2 2
IE 3 3
IE 4 4
IE 5 5
IA NH-1 NH -1
* Factorials
RE FACT0 1.0
DO I 1 NC
RI RI I
IA I-1 I -1
A* FACT(I) FACT(I-1) RI
ND
* itau[i] is the largest integer k with t[k] <= tau[i]
* itau {i in 1..nm} := min(nh,floor(tau[i]/h)+1);
DO I 1 NM
A/ TAU/H TAU(I) H
IR IT/H TAU/H
IA IT/H+1 IT/H 1
I= A IT/H+1
I= B NH
* this is how we find min(a,b) !!
* first set a <- - a and b <- - b
IM A A -1
IM B B -1
* now add |a| + |b| to both
RI A A
R( ABSA ABS A
IR ABSA ABSA
RI B B
R( ABSB ABS B
IR ABSB ABSB
I+ ABSA+B ABSA ABSB
I+ A A ABSA+B
I+ B B ABSA+B
* only one of [a/b] and [b/a] is nonzero (unless a=b)
I/ A/B A B
I/ B/A B A
* form max(a,b) = (a.[a/b] + b.[b/a]) / ([a/b] + [b/a])
I+ SUM A/B B/A
I* A A A/B
I* B B B/A
I+ MAXA,B A B
I/ MAXA,B MAXA,B SUM
* subtract |a| + |b| and negate to find the required minimum
I- MINA,B ABSA+B MAXA,B
AI ITAU(I) MINA,B
ND
VARIABLES
DO I 1 NP
X THETA(I) $ ODE parameters
ND
* The collocation approximation u is defined by the parameters V and W
DO I 1 NH
DO J 1 NE
X V(I,J)
OD J
DO K 1 NC
DO S 1 NE
X W(I,K,S)
OD S
OD K
DO J 1 NC
DO S 1 NE
* U[i,j,s] is u evaluated at the collocation points
X U(I,J,S)
* DU[i,j,s] is u' evaluated at the collocation points
X DU(I,J,S)
ND
GROUPS
* param t {i in 1..nh+1} := (i-1)*h
* obj(j,s) = v[itau[j],s] - z[j,s] + (
* sum {k in 1..nc} w[itau[j],k,s]*(tau[j]-t[itau[j]])^k/(fact[k]*h^(k-1)))
DO J 1 NM
A= RITAU ITAU(J)
IR I RITAU
RA T RITAU -1.0
R* T T H
A- DIFF TAU(J) T
DO S 1 NE
R= RATIO DIFF
XN OBJ(J,S) V(I,S) 1.0
DO K 1 NC
A/ COEF RATIO FACT(K)
ZN OBJ(J,S) W(I,K,S) COEF
R* RATIO RATIO DIFF
R/ RATIO RATIO H
ND
* - u {i in 1..nh, j in 1..nc, s in 1..ne} +
* v[i,s] + h*sum {k in 1..nc} w[i,k,s]*(rho[j]^k/fact[k]) = 0
DO I 1 NH
DO J 1 NC
A= RH RHO(J)
XE U(I,J,1) U(I,J,1) -1.0 V(I,1) 1.0
XE U(I,J,2) U(I,J,2) -1.0 V(I,2) 1.0
XE U(I,J,3) U(I,J,3) -1.0 V(I,3) 1.0
R* PROD RH H
DO K 1 NC
A/ COEF PROD FACT(K)
ZE U(I,J,1) W(I,K,1) COEF
ZE U(I,J,2) W(I,K,2) COEF
ZE U(I,J,3) W(I,K,3) COEF
R* PROD PROD RH
OD K
* - du {i in 1..nh, j in 1..nc, s in 1..ne} +
* sum {k in 1..nc} w[i,k,s]*(rho[j]^(k-1)/fact[k-1]) = 0
XE DU(I,J,1) DU(I,J,1) -1.0
XE DU(I,J,2) DU(I,J,2) -1.0
XE DU(I,J,3) DU(I,J,3) -1.0
RE PROD 1.0
DO K 1 NC
IA K-1 K -1
A/ COEF PROD FACT(K-1)
ZE DU(I,J,1) W(I,K,1) COEF
ZE DU(I,J,2) W(I,K,2) COEF
ZE DU(I,J,3) W(I,K,3) COEF
R* PROD PROD RH
ND
* continuity {i in 1..nh-1, s in 1..ne}:
* v[i,s] - v[i+1,s] + (sum {j in 1..nc} w[i,j,s]*h/fact[j]) = 0
DO I 1 NH-1
IA I+1 I 1
DO S 1 NE
XE C(I,S) V(I,S) 1.0 V(I+1,S) -1.0
DO J 1 NC
A/ COEF H FACT(J)
ZE C(I,S) W(I,J,S) COEF
ND
* collocation eqns (linear parts)
DO I 1 NH
DO J 1 NC
DO S 1 NE
XE CO(I,J,S) DU(I,J,S) 1.0
ND
CONSTANTS
DO J 1 NM
DO S 1 NE
Z METHANOL OBJ(J,S) Z(J,S)
ND
BOUNDS
XR METHANOL 'DEFAULT'
DO I 1 NP
XL METHANOL THETA(I) 0.0
ND
DO S 1 NE
ZX METHANOL V(1,S) BC(S)
ND
START POINT
DO I 1 NP
X METHANOL THETA(I) 1.0
ND
DO I 1 NH
DO J 1 NE
X METHANOL V(I,J)
OD J
ND
IE I1 1
A= RITAU ITAU(1)
IR I2 RITAU
DO I I1 I2
DO S 1 NE
Z METHANOL V(I,S) BC(S)
DO J 1 NC
X METHANOL W(I,J,S) 0.0
Z METHANOL U(I,J,S) BC(S)
X METHANOL DU(I,J,S) 0.0
ND
DO K 2 NM
IA I1 I2 1
A= RITAU ITAU(K)
IR I2 RITAU
DO I I1 I2
IE S 1
Z METHANOL V(I,S) Z(K,S)
DO J 1 NC
X METHANOL W(I,J,S) 0.0
Z METHANOL U(I,J,S) Z(K,S)
X METHANOL DU(I,J,S) 0.0
OD J
IE S 2
Z METHANOL V(I,S) Z(K,S)
DO J 1 NC
X METHANOL W(I,J,S) 0.0
Z METHANOL U(I,J,S) Z(K,S)
X METHANOL DU(I,J,S) 0.0
OD J
IE S 3
Z METHANOL V(I,S) Z(K,S)
DO J 1 NC
X METHANOL W(I,J,S) 0.0
Z METHANOL U(I,J,S) Z(K,S)
X METHANOL DU(I,J,S) 0.0
OD J
ND
IA I1 I2 1
I= I2 NH
DO I I1 I2
DO S 1 NE
Z METHANOL V(I,S) Z(NM,S)
DO J 1 NC
X METHANOL W(I,J,S) 0.0
Z METHANOL U(I,J,S) Z(NM,S)
X METHANOL DU(I,J,S) 0.0
ND
ELEMENT TYPE
EV PROD1 THETA2 THETA3
EV PROD1 THETA4 U
IV PROD1 THETA U
EV PROD2 THETA U
EV RATIO1 U1 U2
EV RATIO1 THETAA THETAB
EV RATIO1 THETAC
EV RATIO2 U1 U2
EV RATIO2 THETAA THETAB
EV RATIO2 THETAC
ELEMENT USES
DO I 1 NH
DO J 1 NC
XT C1(I,J) PROD1
ZV C1(I,J) THETA2 THETA(2)
ZV C1(I,J) THETA3 THETA(3)
ZV C1(I,J) THETA4 THETA(4)
ZV C1(I,J) U U(I,J,1)
XT C2(I,J) RATIO1
ZV C2(I,J) THETAA THETA(1)
ZV C2(I,J) THETAB THETA(2)
ZV C2(I,J) THETAC THETA(5)
ZV C2(I,J) U1 U(I,J,1)
ZV C2(I,J) U2 U(I,J,2)
XT C3(I,J) RATIO2
ZV C3(I,J) THETAA THETA(1)
ZV C3(I,J) THETAB THETA(2)
ZV C3(I,J) THETAC THETA(5)
ZV C3(I,J) U1 U(I,J,1)
ZV C3(I,J) U2 U(I,J,2)
XT C4(I,J) PROD2
ZV C4(I,J) THETA THETA(3)
ZV C4(I,J) U U(I,J,1)
XT C5(I,J) RATIO2
ZV C5(I,J) THETAA THETA(1)
ZV C5(I,J) THETAB THETA(5)
ZV C5(I,J) THETAC THETA(2)
ZV C5(I,J) U1 U(I,J,1)
ZV C5(I,J) U2 U(I,J,2)
XT C6(I,J) PROD2
ZV C6(I,J) THETA THETA(4)
ZV C6(I,J) U U(I,J,1)
ND
GROUP TYPE
GV L2 X
GROUP USES
* collocation for equation 1 {i in 1..nh, j in 1..nc}:
* du[i,j,1] + (2*theta[2] + theta[3] + theta[4] )*u[i,j,1]
* - (theta[1]*u[i,j,1]*u[i,j,2])/
* ((theta[2]+theta[5])*u[i,j,1]+u[i,j,2]) = 0
* collocation for equation 2 {i in 1..nh, j in 1..nc}:
* du[i,j,2] + (theta[1]*u[i,j,1]*u[i,j,2]) /
* ((theta[2]+theta[5])*u[i,j,1]+u[i,j,2])
* - (theta[1]*theta[2]*u[i,j,1])**2 /
* ((theta[2]+theta[5])*u[i,j,1]+u[i,j,2])
* - theta[3]*u[i,j,1] = 0
* collocation for equation 3 {i in 1..nh, j in 1..nc}:
* du[i,j,3] - (theta[1]*u[i,j,1]*(u[i,j,2]))/
* ((theta[2]+theta[5])*u[i,j,1]+u[i,j,2])
* - (theta[1]*theta[5]*u[i,j,1]**2)/
* ((theta[2]+theta[5])*u[i,j,1]+u[i,j,2])
* - theta[4]*u[i,j,1] = 0
DO I 1 NH
DO J 1 NC
XE CO(I,J,1) C1(I,J) 1.0 C2(I,J) -1.0
XE CO(I,J,2) C2(I,J) 1.0 C3(I,J) -1.0
XE CO(I,J,2) C4(I,J) -1.0
XE CO(I,J,3) C2(I,J) -1.0 C5(I,J) -1.0
XE CO(I,J,3) C6(I,J) -1.0
ND
* objective function sum {j in 1..nm} obj(j)^2
DO J 1 NM
DO S 1 NE
XT OBJ(J,S) L2
ND
OBJECT BOUND
* Solution
*LO SOLUTION 9.02228D-03 $ (NH=50)
*LO SOLUTION 9.02228D-03 $ (NH=100)
*LO SOLUTION 9.02228D-03 $ (NH=200)
*LO SOLUTION 9.02228D-03 $ (NH=400)
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS METHANOL
TEMPORARIES
R THETAS
R N
R D
R D2
R D3
R ND2
R ND3
R NU1
R NU2
R NTA
R NTB
R NTC
R NU1U1
R NU1U2
R NU1TA
R NU1TB
R NU1TC
R NU2U2
R NU2TA
R NU2TB
R NU2TC
R NTATA
R NTATB
R NTATC
R NTBTB
R NTBTC
R NTCTC
R DU1
R DU2
R DTA
R DTB
R DTC
R DU1U1
R DU1U2
R DU1TA
R DU1TB
R DU1TC
R DU2U2
R DU2TA
R DU2TB
R DU2TC
R DTATA
R DTATB
R DTATC
R DTBTB
R DTBTC
R DTCTC
INDIVIDUALS
T PROD1
R THETA THETA2 2.0 THETA3 1.0
R THETA THETA4 1.0
R U U 1.0
F THETA * U
G THETA U
G U THETA
H THETA U 1.0
T PROD2
F THETA * U
G THETA U
G U THETA
H THETA U 1.0
T RATIO1
A THETAS THETAB + THETAC
A N THETAA * U1 * U2
A D THETAS * U1 + U2
A D2 D * D
A D3 D * D2
A ND2 N / D2
A ND3 2.0 * N / D3
A NU1 THETAA * U2
A NU2 THETAA * U1
A NTA U1 * U2
A NU1U2 THETAA
A NU1TA U2
A NU2TA U1
A DU1 THETAS
A DU2 1.0
A DTB U1
A DTC U1
A DU1TB 1.0
A DU1TC 1.0
F N / D
G U1 NU1 / D - N * DU1 / D2
G U2 NU2 / D - N * DU2 / D2
G THETAA NTA / D
G THETAB - N * DTB / D2
G THETAC - N * DTC / D2
H U1 U1 - ( ( NU1 * DU1 + NU1 * DU1 ) / D2 )
H+ + ND3 * DU1 * DU1
H U1 U2 ( NU1U2 / D )
H+ - ( ( NU1 * DU2 + NU2 * DU1 ) / D2 )
H+ + ND3 * DU1 * DU2
H U1 THETAA ( NU1TA / D )
H+ - ( ( NTA * DU1 ) / D2 )
H U1 THETAB - ( ( NU1 * DTB ) / D2 )
H+ + ND3 * DU1 * DTB - ND2 * DU1TB
H U1 THETAC - ( ( NU1 * DTC ) / D2 )
H+ + ND3 * DU1 * DTC - ND2 * DU1TC
H U2 U2 - ( ( NU2 * DU2 + NU2 * DU2 ) / D2 )
H+ + ND3 * DU2 * DU2
H U2 THETAA ( NU2TA / D ) - ( ( NTA * DU2 ) / D2 )
H U2 THETAB - ( ( NU2 * DTB ) / D2 )
H+ + ND3 * DU2 * DTB
H U2 THETAC - ( ( NU2 * DTC ) / D2 )
H+ + ND3 * DU2 * DTC
H THETAA THETAB - ( ( NTA * DTB ) / D2 )
H THETAA THETAC - ( ( NTA * DTC ) / D2 )
H THETAB THETAB ND3 * DTB * DTB
H THETAB THETAC ND3 * DTB * DTC
H THETAC THETAC ND3 * DTC * DTC
T RATIO2
A THETAS THETAB + THETAC
A N THETAA * THETAB * U1 ** 2
A D THETAS * U1 + U2
A D2 D * D
A D3 D * D2
A ND2 N / D2
A ND3 2.0 * N / D3
A NU1 2.0 * THETAA * THETAB * U1
A NTA THETAB * U1 ** 2
A NTB THETAA * U1 ** 2
A NU1U1 2.0 * THETAA * THETAB
A NU1TA 2.0 * THETAB * U1
A NU1TB 2.0 * THETAA * U1
A NTATB U1 ** 2
A DU1 THETAS
A DU2 1.0
A DTB U1
A DTC U1
A DU1TB 1.0
A DU1TC 1.0
F N / D
G U1 NU1 / D - N * DU1 / D2
G U2 - N * DU2 / D2
G THETAA NTA / D
G THETAB NTB / D - N * DTB / D2
G THETAC - N * DTC / D2
H U1 U1 ( NU1U1 / D )
H+ - ( ( NU1 * DU1 + NU1 * DU1 ) / D2 )
H+ + ND3 * DU1 * DU1
H U1 U2 - ( ( NU1 * DU2 ) / D2 )
H+ + ND3 * DU1 * DU2
H U1 THETAA ( NU1TA / D )
H+ - ( ( NTA * DU1 ) / D2 )
H U1 THETAB ( NU1TB / D )
H+ - ( ( NU1 * DTB + NTB * DU1 ) / D2 )
H+ + ND3 * DU1 * DTB - ND2 * DU1TB
H U1 THETAC - ( ( NU1 * DTC ) / D2 )
H+ + ND3 * DU1 * DTC - ND2 * DU1TC
H U2 U2 + ND3 * DU2 * DU2
H U2 THETAA - ( ( NTA * DU2 ) / D2 )
H U2 THETAB - ( ( NTB * DU2 ) / D2 )
H+ + ND3 * DU2 * DTB
H U2 THETAC + ND3 * DU2 * DTC
H THETAA THETAB ( NTATB / D )
H+ - ( ( NTA * DTB ) / D2 )
H THETAA THETAC - ( ( NTA * DTC ) / D2 )
H THETAB THETAB - ( ( NTB * DTB + NTB * DTB ) / D2 )
H+ + ND3 * DTB * DTB
H THETAB THETAC - ( ( NTB * DTC ) / D2 )
H+ + ND3 * DTB * DTC
H THETAC THETAC + ND3 * DTC * DTC
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS METHANOL
INDIVIDUALS
T L2
F X * X
G X + X
H 2.0
ENDATA