-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOBSTCLBM.SIF
285 lines (202 loc) · 6.97 KB
/
OBSTCLBM.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
***************************
* SET UP THE INITIAL DATA *
***************************
NAME OBSTCLBM
* Problem :
* *********
* A quadratic obstacle problem by Dembo and Tulowitzki
* The problem comes from the obstacle problem on a rectangle.
* The rectangle is discretized into (px-1)(py-1) little rectangles. The
* heights of the considered surface above the corners of these little
* rectangles are the problem variables, There are px*py of them.
* Source:
* R. Dembo and U. Tulowitzki,
* "On the minimization of quadratic functions subject to box
* constraints",
* WP 71, Yale University (new Haven, USA), 1983.
* See also More 1989 (Problem B, Starting point M (average of L and U))
* SIF input: Ph. Toint, Dec 1989.
* classification QBR2-AY-V-0
* PX is the number of points along the X side of the rectangle
* PY is the number of points along the Y side of the rectangle
*IE PX 4 $-PARAMETER n = 16
*IE PY 4 $-PARAMETER
*IE PX 10 $-PARAMETER n = 100 original value
*IE PY 10 $-PARAMETER original value
*IE PX 23 $-PARAMETER n = 529
*IE PY 23 $-PARAMETER
*IE PX 32 $-PARAMETER n = 1024
*IE PY 32 $-PARAMETER
*IE PX 75 $-PARAMETER n = 5625
*IE PY 75 $-PARAMETER
IE PX 100 $-PARAMETER n = 10000
IE PY 100 $-PARAMETER
*IE PX 125 $-PARAMETER n = 15625
*IE PY 125 $-PARAMETER
* The force constant
RE C 1.0 $-PARAMETER the force constant
* Define a few helpful parameters
IA PX-1 PX -1
RI RPX-1 PX-1
RD HX RPX-1 1.0
IA PY-1 PY -1
RI RPY-1 PY-1
RD HY RPY-1 1.0
R* HXHY HX HY
RD 1/HX HX 1.0
RD 1/HY HY 1.0
R* HX/HY HX 1/HY
R* HY/HX HY 1/HX
RM HY/4HX HY/HX 0.25
RM HX/4HY HX/HY 0.25
R* C0 HXHY C
RM LC C0 -1.0
IE 1 1
IE 2 2
VARIABLES
* Define one variable per discretized point in the unit square
DO J 1 PX
DO I 1 PY
X X(I,J)
ND
GROUPS
* Define a group per interior node
DO I 2 PY-1
DO J 2 PX-1
ZN G(I,J) X(I,J) LC
ND
BOUNDS
* Fix the variables on the lower and upper edges of the unit square
DO J 1 PX
XX OBSTCLBM X(1,J) 0.0
XX OBSTCLBM X(PY,J) 0.0
ND
* Fix the variables on the left and right edges of the unit square
DO I 2 PY-1
XX OBSTCLBM X(I,PX) 0.0
XX OBSTCLBM X(I,1) 0.0
ND
* Describe the lower obstacle (problem B)
DO I 2 PY-1
IA I-1 I -1
RI RI-1 I-1
R* XSI1 RI-1 HY
RM 3XSI1 XSI1 9.2
R( SXSI1 SIN 3XSI1
DO J 2 PX-1
IA J-1 J -1
RI RJ-1 J-1
R* XSI2 RJ-1 HX
RM 3XSI2 XSI2 9.3
R( SXSI2 SIN 3XSI2
R* L1 SXSI1 SXSI2
R* L2 L1 L1
R* LOW L2 L1
ZL OBSTCLBM X(I,J) LOW
ND
* Describe the upper obstacle (problem B)
DO I 2 PY-1
IA I-1 I -1
RI RI-1 I-1
R* XSI1 RI-1 HY
RM 3XSI1 XSI1 9.2
R( SXSI1 SIN 3XSI1
DO J 2 PX-1
IA J-1 J -1
RI RJ-1 J-1
R* XSI2 RJ-1 HX
RM 3XSI2 XSI2 9.3
R( SXSI2 SIN 3XSI2
R* L1 SXSI1 SXSI2
R* L2 L1 L1
RA UPP L2 0.02
ZU OBSTCLBM X(I,J) UPP
ND
START POINT
* Start from the boundary values on the lower and upper edges
DO J 1 PX
X OBSTCLBM X(1,J) 0.0
X OBSTCLBM X(PY,J) 0.0
ND
* Start from the boundary values on the left and right edges
DO I 2 PY-1
X OBSTCLBM X(I,PX) 0.0
X OBSTCLBM X(I,1) 0.0
ND
* Describe the average between lower and upper obstacle
* (starting point M)
DO I 2 PY-1
IA I-1 I -1
RI RI-1 I-1
R* XSI1 RI-1 HY
RM 3XSI1 XSI1 9.2
R( SXSI1 SIN 3XSI1
DO J 2 PX-1
IA J-1 J -1
RI RJ-1 J-1
R* XSI2 RJ-1 HX
RM 3XSI2 XSI2 9.3
R( SXSI2 SIN 3XSI2
R* L1 SXSI1 SXSI2
R* L2 L1 L1
R* LOW L1 L2
RA UPP L2 0.02
R+ M1 LOW UPP
RM MID M1 0.5
Z OBSTCLBM X(I,J) MID
ND
ELEMENT TYPE
EV ISQ V1 V2
IV ISQ U
ELEMENT USES
* Each node has four elements
DO I 2 PY-1
IA I-1 I -1
IA I+1 I 1
DO J 2 PX-1
IA J-1 J -1
IA J+1 J 1
XT A(I,J) ISQ
ZV A(I,J) V1 X(I+1,J)
ZV A(I,J) V2 X(I,J)
XT B(I,J) ISQ
ZV B(I,J) V1 X(I,J+1)
ZV B(I,J) V2 X(I,J)
XT C(I,J) ISQ
ZV C(I,J) V1 X(I-1,J)
ZV C(I,J) V2 X(I,J)
XT D(I,J) ISQ
ZV D(I,J) V1 X(I,J-1)
ZV D(I,J) V2 X(I,J)
ND
GROUP USES
DO I 2 PY-1
DO J 2 PX-1
ZE G(I,J) A(I,J) HY/4HX
ZE G(I,J) B(I,J) HX/4HY
ZE G(I,J) C(I,J) HY/4HX
ZE G(I,J) D(I,J) HX/4HY
ND
OBJECT BOUND
* Solution
*LO SOLTN(4) -0.0081108
*LO SOLTN(10) 2.87503823
*LO SOLTN(23) 6.51932527
*LO SOLTN(32) 6.88708670
*LO SOLTN(75) ???
*LO SOLTN(100) ???
*LO SOLTN(125) ???
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS OBSTCLBM
INDIVIDUALS
* Difference squared
T ISQ
R U V1 1.0 V2 -1.0
F U * U
G U U + U
H U U 2.0
ENDATA