-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathODC.SIF
295 lines (218 loc) · 6.73 KB
/
ODC.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
***************************
* SET UP THE INITIAL DATA *
***************************
NAME ODC
* Problem :
* *********
* Optimal Design with Composites: The optimal design problem requires
* determining the placement of two elastic materials in the cross-section
* of a rod so as to maximize the resulting torsional rigidity.
* Source:
* B. Averick and J.J. More',
* "Evaluation of Large-Scale Optimization Problems on Vector and Parallel
* Architectures ",
* Report MCS-P379-0893, Mathematics and Computer Science Division,
* Argonne National Laboratory, 1993.
* SIF input: Ph. Toint, Nov 1993
* classification OXR2-MY-V-0
* NX is the number of interior points along the X axis, NY that of
* interior points along the Y axis.
* The number of free variables is NX * NY
*IE NX 2 $-PARAMETER n = 4
*IE NY 2 $-PARAMETER n = 4
*IE NX 10 $-PARAMETER n = 100 original value
*IE NY 10 $-PARAMETER n = 100 original value
*IE NX 31 $-PARAMETER n = 992
*IE NY 32 $-PARAMETER n = 992
IE NX 70 $-PARAMETER n = 4900
IE NY 70 $-PARAMETER n = 4900
*IE NX 100 $-PARAMETER n = 10000
*IE NY 100 $-PARAMETER n = 10000
*IE NX 200 $-PARAMETER n = 40000
*IE NY 200 $-PARAMETER n = 40000
* Define a few helpful parameters
IA NX+1 NX 1
IA NY+1 NY 1
RI RNX+1 NX+1
RD HX RNX+1 1.0
RI RNY+1 NY+1
RD HY RNY+1 1.0
R* HXSQ HX HX
R* HYSQ HY HY
R* HXHY HX HY
RM HXHY/2 HXHY 0.5
RE SIX 6.0
R/ HXHY/6 HXHY SIX
IE 0 0
IE 1 1
VARIABLES
* Define one variable per discretized point in the unit square
DO I 0 NX+1
DO J 0 NY+1
X X(I,J)
OD J
OD I
GROUPS
* Lower triangles
DO I 0 NX
IA I+1 I 1
DO J 0 NY
IA J+1 J 1
ZN FL(I,J) X(I,J) HXHY/6
ZN FL(I,J) X(I+1,J) HXHY/6
ZN FL(I,J) X(I,J+1) HXHY/6
OD J
OD I
* Upper triangles
DO I 1 NX+1
IA I-1 I -1
DO J 1 NY+1
IA J-1 J -1
ZN FU(I,J) X(I,J) HXHY/6
ZN FU(I,J) X(I-1,J) HXHY/6
ZN FU(I,J) X(I,J-1) HXHY/6
OD J
OD I
BOUNDS
FR ODC 'DEFAULT'
* Zero on the boundary
DO I 0 NX+1
XX ODC X(I,0) 0.0
XX ODC X(I,NY+1) 0.0
OD I
DO J 1 NY
XX ODC X(0,J) 0.0
XX ODC X(NX+1,J) 0.0
OD J
START POINT
DO I 0 NX+1
XV ODC X(I,0) 0.0
XV ODC X(I,NY+1) 0.0
OD I
DO J 1 NY
XV ODC X(0,J) 0.0
XV ODC X(NX+1,J) 0.0
OD J
ELEMENT TYPE
EV PSI V1 V2
EV PSI V0
IV PSI U V
EP PSI HXHX HYHY
ELEMENT USES
* Lower triangles
DO I 0 NX
IA I+1 I 1
DO J 0 NY
IA J+1 J 1
XT A(I,J) PSI
ZV A(I,J) V1 X(I+1,J)
ZV A(I,J) V2 X(I,J+1)
ZV A(I,J) V0 X(I,J)
ZP A(I,J) HXHX HXSQ
ZP A(I,J) HYHY HYSQ
OD J
OD I
* Upper triangles
DO I 1 NX+1
IA I-1 I -1
DO J 1 NY+1
IA J-1 J -1
XT B(I,J) PSI
ZV B(I,J) V1 X(I-1,J)
ZV B(I,J) V2 X(I,J-1)
ZV B(I,J) V0 X(I,J)
ZP B(I,J) HXHX HXSQ
ZP B(I,J) HYHY HYSQ
OD J
OD I
GROUP USES
* Lower triangles
DO I 0 NX
DO J 0 NY
ZE FL(I,J) A(I,J) HXHY/2
OD J
OD I
* Upper triangles
DO I 1 NX+1
DO J 1 NY+1
ZE FU(I,J) B(I,J) HXHY/2
OD J
OD I
OBJECT BOUND
* Solution
*LO SOLTN(10,10)
*LO SOLTN(31,32)
*LO SOLTN(100,100)
*LO SOLTN(200,200)
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS ODC
TEMPORARIES
R S1
R S2
R E
R L
R MU1
R MU2
R T1
R T2
R F
R DFDU
R DFDV
R D2FDUU
R D2FDUV
R D2FDVV
R S
L I1
L I2
L I3
M SQRT
GLOBALS
A L 0.008
A MU1 1.0
A MU2 2.0
INDIVIDUALS
T PSI
R U V1 1.0 V0 -1.0
R V V2 1.0 V0 -1.0
A T1 SQRT( 2.0 * L * MU1 / MU2 )
A T2 SQRT( 2.0 * L * MU2 / MU1 )
A S1 U * U / HXHX
A S2 V * V / HYHY
A S S1 + S2
A E SQRT( S )
A I1 E .LE. T1
A I2 E .GT. T1 .AND. E .LE. T2
A I3 E .GT. T2
I I1 F 0.5 * MU2 * S
I I1 DFDU MU2 * U / HXHX
I I1 DFDV MU2 * V / HYHY
I I1 D2FDUU MU2 / HXHX
I I1 D2FDUV 0.0
I I1 D2FDVV MU2 / HYHY
I I2 F MU2 * T1 * ( E - 0.5 * T1 )
I I2 DFDU MU2 * T1 * U / ( HXHX * E )
I I2 DFDV MU2 * T1 * V / ( HYHY * E )
I I2 D2FDUU MU2 * T1 * ( 1.0 - 0.5 * U * U /
I+ ( HXHX * S ) ) / ( HXHX * E )
I I2 D2FDUV -0.5 * MU2 * T1 * U * V /
I+ ( HYHY * HXHX * S * E )
I I2 D2FDVV MU2 * T1 * ( 1.0 - 0.5 * V * V /
I+ ( HYHY * S ) ) / ( HYHY * E )
I I3 F 0.5 * MU1 * ( S - T2 * T2 ) +
I+ MU2 * T1 * ( T2 - 0.5 * T1)
I I3 DFDU MU1 * U / HXHX
I I3 DFDV MU1 * V / HYHY
I I3 D2FDUU MU1 / HXHX
I I3 D2FDUV 0.0
I I3 D2FDVV MU1 / HYHY
F F
G U DFDU
G V DFDV
H U U D2FDUU
H U V D2FDUV
H V V D2FDVV
ENDATA