-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOSBORNEA.SIF
189 lines (135 loc) · 3.53 KB
/
OSBORNEA.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
***************************
* SET UP THE INITIAL DATA *
***************************
NAME OSBORNEA
* Problem :
* *********
* Osborne first problem in 5 variables.
* This function is a nonlinear least squares with 33 groups. Each
* group has 2 nonlinear elements and one linear element.
* Source: Problem 17 in
* J.J. More', B.S. Garbow and K.E. Hillstrom,
* "Testing Unconstrained Optimization Software",
* ACM Transactions on Mathematical Software, vol. 7(1), pp. 17-41, 1981.
* See alos Buckley#32 (p. 77).
* SIF input: Ph. Toint, Dec 1989.
* classification SUR2-MN-5-0
* Number of groups
IE M 33
* Useful parameters
IE 1 1
VARIABLES
X1
X2
X3
X4
X5
GROUPS
DO I 1 M
XN G(I) X1 1.0
ND
CONSTANTS
OSBORNEA G1 0.844
OSBORNEA G2 0.908
OSBORNEA G3 0.932
OSBORNEA G4 0.936
OSBORNEA G5 0.925
OSBORNEA G6 0.908
OSBORNEA G7 0.881
OSBORNEA G8 0.850
OSBORNEA G9 0.818
OSBORNEA G10 0.784
OSBORNEA G11 0.751
OSBORNEA G12 0.718
OSBORNEA G13 0.685
OSBORNEA G14 0.658
OSBORNEA G15 0.628
OSBORNEA G16 0.603
OSBORNEA G17 0.580
OSBORNEA G18 0.558
OSBORNEA G19 0.538
OSBORNEA G20 0.522
OSBORNEA G21 0.506
OSBORNEA G22 0.490
OSBORNEA G23 0.478
OSBORNEA G24 0.467
OSBORNEA G25 0.457
OSBORNEA G26 0.448
OSBORNEA G27 0.438
OSBORNEA G28 0.431
OSBORNEA G29 0.424
OSBORNEA G30 0.420
OSBORNEA G31 0.414
OSBORNEA G32 0.411
OSBORNEA G33 0.406
BOUNDS
FR OSBORNEA 'DEFAULT'
START POINT
OSBORNEA X1 0.5
OSBORNEA X2 1.5
OSBORNEA X3 -1.0
OSBORNEA X4 0.01
OSBORNEA X5 0.02
ELEMENT TYPE
EV PEXP V1 V2
EP PEXP T
ELEMENT USES
DO I 1 M
IA I-1 I -1
IM ITI I-1 10
RI MTI ITI
RM TI MTI -1.0
XT A(I) PEXP
ZV A(I) V1 X2
ZV A(I) V2 X4
ZP A(I) T TI
XT B(I) PEXP
ZV B(I) V1 X3
ZV B(I) V2 X5
ZP B(I) T TI
ND
GROUP TYPE
GV L2 GVAR
GROUP USES
DO I 1 M
XT G(I) L2
XE G(I) A(I) B(I)
ND
OBJECT BOUND
* Least square problems are bounded below by zero
LO OSBORNEA 0.0
* Solution
*LO SOLTN 5.46489D-05
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS OSBORNEA
TEMPORARIES
R EXPA
R V1EXPA
M EXP
INDIVIDUALS
* Parametric product with exponential
T PEXP
A EXPA EXP( T * V2 )
A V1EXPA V1 * EXPA
F V1EXPA
G V1 EXPA
G V2 T * V1EXPA
H V1 V2 T * EXPA
H V2 V2 T * T * V1EXPA
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS OSBORNEA
INDIVIDUALS
* Least-square groups
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA