-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPALMER2E.SIF
209 lines (158 loc) · 4.26 KB
/
PALMER2E.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
***************************
* SET UP THE INITIAL DATA *
***************************
NAME PALMER2E
* Problem :
* *********
* A nonlinear least squares problem
* arising from chemical kinetics.
* model: H-N=C=O TZVP + MP2
* fitting Y to A0 + A2 X**2 + A4 X**4 + A6 X**6 + A8 X**8 +
* A10 X**10 + L * EXP( -K X**2 )
* Source:
* M. Palmer, Edinburgh, private communication.
* SIF input: Nick Gould, 1990.
* classification SBR2-RN-8-0
* Number of data points
IE M 23
* Other data
IE 1 1
* X (radians)
RE X1 -1.745329
RE X2 -1.570796
RE X3 -1.396263
RE X4 -1.221730
RE X5 -1.047198
RE X6 -0.937187
RE X7 -0.872665
RE X8 -0.698132
RE X9 -0.523599
RE X10 -0.349066
RE X11 -0.174533
RE X12 0.0
RE X13 0.174533
RE X14 0.349066
RE X15 0.523599
RE X16 0.698132
RE X17 0.872665
RE X18 0.937187
RE X19 1.047198
RE X20 1.221730
RE X21 1.396263
RE X22 1.570796
RE X23 1.745329
* Y( KJmol-1)
RE Y1 72.676767
RE Y2 40.149455
RE Y3 18.8548
RE Y4 6.4762
RE Y5 0.8596
RE Y6 0.00000
RE Y7 0.2730
RE Y8 3.2043
RE Y9 8.1080
RE Y10 13.4291
RE Y11 17.7149
RE Y12 19.4529
RE Y13 17.7149
RE Y14 13.4291
RE Y15 8.1080
RE Y16 3.2053
RE Y17 0.2730
RE Y18 0.00000
RE Y19 0.8596
RE Y20 6.4762
RE Y21 18.8548
RE Y22 40.149455
RE Y23 72.676767
VARIABLES
A0
A2
A4
A6
A8
A10
K
L
GROUPS
DO I 1 M
A* XSQR X(I) X(I)
A* XQUART XSQR XSQR
A* X**6 XSQR XQUART
A* X**8 XSQR X**6
A* X**10 XSQR X**8
A* X**12 XSQR X**10
A* X**14 XSQR X**12
XN O(I) A0 1.0
ZN O(I) A2 XSQR
ZN O(I) A4 XQUART
ZN O(I) A6 X**6
ZN O(I) A8 X**8
ZN O(I) A10 X**10
ND
CONSTANTS
DO I 1 M
Z PALMER2E O(I) Y(I)
ND
BOUNDS
FR PALMER2E A0
FR PALMER2E A2
FR PALMER2E A4
FR PALMER2E A6
FR PALMER2E A8
FR PALMER2E A10
FR PALMER2E L
START POINT
XV PALMER2E 'DEFAULT' 1.0
ELEMENT TYPE
EV PROD K L
EP PROD XSQR
ELEMENT USES
DO I 1 M
A* XSQR X(I) X(I)
XT E(I) PROD
ZV E(I) K K
ZV E(I) L L
ZP E(I) XSQR XSQR
ND
GROUP TYPE
GV L2 GVAR
GROUP USES
DO I 1 M
XT O(I) L2
XE O(I) E(I)
ND
OBJECT BOUND
* Least square problems are bounded below by zero
LO PALMER2E 0.0
* Solution
*LO SOLTN 2.0650351D-04
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS PALMER2E
TEMPORARIES
R EXPON
M EXP
INDIVIDUALS
T PROD
A EXPON EXP( - K * XSQR )
F L * EXPON
G K - XSQR * L * EXPON
G L EXPON
H K K XSQR * XSQR * L * EXPON
H K L - XSQR * EXPON
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS PALMER2E
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA