-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPORTSQP.SIF
109 lines (75 loc) · 1.72 KB
/
PORTSQP.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
***************************
* SET UP THE INITIAL DATA *
***************************
NAME PORTSQP
* Problem :
* *********
* A convex quadratic program of portfolio type
* The objective function is of the form
*
* sum (i=1,n) ( x_i - ( 2 i - n ) / n )^2
*
* There is a single equality constraint of the form
*
* sum(i=1,n) x_i = 1
*
* Finally, there are simple bounds
*
* 0 <= x_i (i=1,n)
* SIF input: Nick Gould, June 2001
* classification QLR2-AN-V-1
* The number of equality constraints
*IE N 10
*IE N 100
*IE N 1000
*IE N 10000
IE N 100000
*IE N 1000000
* The number of block-variables.
* Other useful values.
IE 1 1
RI RN N
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
DO I 1 N
XN O(I) X(I) 1.0
XE E X(I) 1.0
ND
CONSTANTS
DO I 1 N
RI RI I
RM 2I RI 2.0
R- 2I-N 2I RN
R/ C 2I-N RN
ZE PORTSQP O(I) C
ND
XE PORTSQP E 1.0
BOUNDS
DO I 1 N
XL PORTSQP X(I) 0.0
ND
START POINT
XV PORTSQP 'DEFAULT' 0.5
GROUP TYPE
GV L2 GVAR
GROUP USES
DO I 1 N
XT O(I) L2
ND
OBJECT BOUND
* Solution
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS PORTSQP
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA