-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPT.SIF
101 lines (68 loc) · 1.99 KB
/
PT.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
***************************
* SET UP THE INITIAL DATA *
***************************
NAME PT
* Problem :
* *********
* A nonlinear programming formulation of a discretization of
* a nonlinear minimax problem.
* The problem is
* min max phi(x,w), for all w in the interval I.
* x w
* I is discretized, and the problem solved over the
* discrete points.
* Nonlinear programming formulation
*
* min u s.t. u - phi >= 0
* x,u
* Specific problem: I = [0,1]
* phi(x,w) = (2w^2-1)x + w(1-w)(1-x)
* Source: E. Polak and A. L. Tits,
* "A recursive quadratic programming algorithm for semi-infinite
* optimization problems",
* Appl. Math. Optim. 8, 1982, pp 325-349.
* SIF input: Nick Gould, February, 1994.
* classification LLR2-AN-2-V
* Discretization
*IE M 2
*IE M 100
IE M 500
* Define the interval
RE LOWER 0.0
RE UPPER 1.0
* Define constants
RE ONE 1.0
IE 0 0
R- DIFF UPPER LOWER
RI RM M
R/ H DIFF RM
VARIABLES
U
X
GROUPS
N OBJ U 1.0
DO I 0 M
RI RI I
R* W RI H
R+ W W LOWER
RS 1-W W 1.0
R* W(1-W) W 1-W
R* W**2 W W
RM 2W**2 W**2 2.0
R- 2W**2-1 2W**2 ONE
R- XCOEFF W(1-W) 2W**2-1
XG LO(I) U 1.0
ZG LO(I) X XCOEFF
ND
CONSTANTS
DO I 0 M
RI RI I
R* W RI H
R+ W W LOWER
RS 1-W W 1.0
R* W-W**2 W 1-W
Z PT LO(I) W-W**2
ND
BOUNDS
FR PT 'DEFAULT'
ENDATA