-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSEMICON2.SIF
202 lines (142 loc) · 4.62 KB
/
SEMICON2.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
***************************
* SET UP THE INITIAL DATA *
***************************
NAME SEMICON2
* Problem :
* *********
* The semiconductor problem by Rheinboldt, using a finite difference
* approximation.
* Source: problem 10 in
* J.J. More',
* "A collection of nonlinear model problems"
* Proceedings of the AMS-SIAM Summer seminar on the Computational
* Solution of Nonlinear Systems of Equations, Colorado, 1988.
* Argonne National Laboratory MCS-P60-0289, 1989.
* SIF input: Ph. Toint, Dec 1989.
* classification NOR2-AN-V-V
* N = Number of discretized point inside the interval [a, b]
* LN = Index of the last negative discretization point
* (the interest is in the negative part)
IE N 10 $-PARAMETER original value
IE LN 9 $-PARAMETER original value
*IE N 50 $-PARAMETER
*IE LN 45 $-PARAMETER
*IE N 100 $-PARAMETER
*IE LN 90 $-PARAMETER
*IE N 500 $-PARAMETER
*IE LN 450 $-PARAMETER
*IE N 1000 $-PARAMETER
*IE LN 900 $-PARAMETER
IE N 5000 $-PARAMETER
IE LN 4500 $-PARAMETER
* Continuation parameter
* Interesting values: 0.0 (the solution is a straight line)
* 0.2
* 1.0 (the true semiconductor equation)
RE LAMBDA 0.2 $-PARAMETER continuation parameter
* The bounds of the interval [a, b] = [ X(0), X(N+1)] which should
* contain zero
RE A -0.00009
RE B 0.00001
* Boundary values
RE UA 0.0
RE UB 700.0
* Problem's constants
RE CA 1.0D12
RE CB 1.0D13
RE BETA 40.0
* Other parameter definitions
IA LN+1 LN 1
IA N+1 N 1
RM -A A -1.0
R+ B-A B -A
RI RN+1 N+1
RD TMP RN+1 1.0
R* H B-A TMP
R* H2 H H
R* LB LAMBDA BETA
R* H2CA H2 CA
R* H2CB H2 CB
R* LH2CA LAMBDA H2CA
R* LH2CB LAMBDA H2CB
R* LUA LAMBDA UA
R* LUB LAMBDA UB
RA ULW LUA -5.0
RA UUP LUB 5.0
RM -LB LB -1.0
RM -LUB LUB -1.0
RM -LH2CB LH2CB -1.0
* Constants
IE 0 0
IE 1 1
VARIABLES
DO I 0 N+1
X U(I)
ND
GROUPS
DO I 1 N
IA I+1 I 1
IA I-1 I -1
XE G(I) U(I-1) 1.0
XE G(I) U(I) -2.0
XE G(I) U(I+1) 1.0
ND
CONSTANTS
DO I 1 LN
Z SEMICON2 G(I) LH2CA
ND
DO I LN+1 N
Z SEMICON2 G(I) -LH2CB
ND
BOUNDS
ZU SEMICON2 'DEFAULT' UUP
ZL SEMICON2 'DEFAULT' ULW
* Fix the boundary conditions
ZX SEMICON2 U(0) LUA
ZX SEMICON2 U(N+1) LUB
START POINT
XV SEMICON2 'DEFAULT' 0.0
ZV SEMICON2 U(0) LUA
ZV SEMICON2 U(N+1) LUB
ELEMENT TYPE
EV WE1 X
EP WE1 LAC LAB
EP WE1 LU
ELEMENT USES
DO I 1 N
XT EA(I) WE1
ZV EA(I) X U(I)
ZP EA(I) LAC LH2CA
ZP EA(I) LAB -LB
ZP EA(I) LU LUA
XT EB(I) WE1
ZV EB(I) X U(I)
ZP EB(I) LAC -LH2CB
ZP EB(I) LAB LB
ZP EB(I) LU LUB
ND
GROUP USES
DO I 1 N
XE G(I) EA(I) EB(I)
ND
OBJECT BOUND
* Least square problems are bounded below by zero
LO SEMICON2 0.0
* Solution
*LO SOLTN 0.0
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS SEMICON2
TEMPORARIES
R FVAL
M EXP
INDIVIDUALS
T WE1
A FVAL LAC * EXP( LAB * ( X - LU ) )
F FVAL
G X LAB * FVAL
H X X LAB * LAB * FVAL
ENDATA