-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
83 lines (72 loc) · 3.16 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import matplotlib.pyplot as plt
from tqdm import tqdm
class CAEModel:
def __init__(self, nn_module, **kwargs):
self.dtype = kwargs.get('dtype', torch.float32)
self.device = kwargs.get('device', torch.device('cuda'))
self.nn_module = nn_module.to(self.device)
self.optim = torch.optim.Adam(self.nn_module.parameters(), lr=1e-3)
self.losses_epoch = []
# TODO: monitor validation error as well
def train(self, dataset, n_epochs, verbose=False, monitor_val=False, **kwargs):
self.nn_module.train()
dataloader = torch.utils.data.DataLoader(dataset, **kwargs)
for epoch in tqdm(range(n_epochs)):
losses_batch = []
for x, y in dataloader:
self.optim.zero_grad()
x = x.to(self.device)
x_pred = self.nn_module(x)
loss_mse = torch.mean((x - x_pred)**2)
losses_batch.append(float(loss_mse))
loss_mse.backward()
self.optim.step()
loss_epoch = sum(losses_batch)/len(losses_batch)
self.losses_epoch.append(loss_epoch)
if verbose:
print(loss_epoch)
def load(self, path):
checkpoint = torch.load(path)
self.nn_module.load_state_dict(checkpoint['nn_module'])
self.optim.load_state_dict(checkpoint['optim'])
self.losses_epoch = checkpoint['losses_epoch']
def save(self, path):
torch.save({
'nn_module': self.nn_module.state_dict(),
'optim': self.optim.state_dict(),
'losses_epoch': self.losses_epoch,
}, path)
def evaluate(self, datasets, **kwargs):
self.nn_module.eval()
outputs = dict()
for dataset in datasets:
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, **kwargs)
for x, y in dataloader:
x = x.to(self.device)
x_pred = self.nn_module(x)
mse = torch.mean((x - x_pred)**2, dim=[1, 2, 3])
y = int(y)
if y not in outputs.keys():
outputs[y] = []
outputs[y].append({'x':x.cpu().detach().numpy()[0,:,:,:],
'x_pred':x_pred.cpu().detach().numpy()[0,:,:,:],
'mse':float(mse.cpu().detach())})
return outputs
def visualize(self, dataset, n):
dataloader = torch.utils.data.DataLoader(dataset, batch_size=n, shuffle=True)
dataiter = iter(dataloader)
x, y = dataiter.next()
x = x.to(self.device)
x_pred = self.nn_module(x)
mses = []
for i in range(n):
mse = torch.mean((x[i] - x_pred[i])**2)
mses.append(float(mse))
x = x.to('cpu').numpy()
x_pred = x_pred.to('cpu').detach().numpy()
fig, axes = plt.subplots(nrows=2, ncols=n, sharex=True, sharey=True, figsize=(25,4))
for j in range(n):
axes[0][j].imshow(x[j][0], cmap='gray')
axes[1][j].imshow(x_pred[j][0], cmap='gray')
axes[1][j].set_xlabel(str(round(mses[j], 3)))