forked from center4ml/cell_identification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
205 lines (161 loc) · 7.26 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
from copy import deepcopy
import numpy as np
import torch.utils.data as data
import os
from copy import deepcopy
import torch
import pandas as pd
from pathlib import Path
import torchvision
import pytorch_lightning as pl
def get_augmentation_tv(aug_list):
transform = torchvision.transforms.Compose([
torchvision.transforms.__getattribute__(aug[0])(**aug[1]) for aug in aug_list
])
return transform
AUGMENTATIONS = {
'flips': [('RandomHorizontalFlip', {}), ('RandomVerticalFlip', {})],
'rotation': [('RandomRotation', {'degrees': 45})],
'affine': [('RandomAffine', {'degrees': 45, 'translate': (0.1, 0.1), 'scale': (1, 2), 'shear': 0})],
'crop32': [('CenterCrop', {'size': 32})],
'crop96': [('CenterCrop', {'size': 96})],
}
def min_bcg_generator(img_shape, img_in):
num_chans = img_in.shape[0]
img_out = np.zeros((num_chans, *img_shape))
img_out[:] = img_in.min(axis=(1,2), keepdims=True)
return np.full(img_shape, np.median(img_in))
def zero_bcg_generator(img_shape, img_in):
num_chans = img_in.shape[0]
return np.zeros((num_chans, *img_shape))
class NumpyCropToTensor:
BCG_GENERATORS = {
None: None,
'zero': zero_bcg_generator,
'min': min_bcg_generator,
}
def __init__(self,
img_shape=(48, 48),
swap_input_axis=True, #for h,w,c input (h,w,c -> c,h,w)
transform=None,
channel_mask=None,
background_generator='zero'
):
self.img_shape = img_shape
self.swap_input_axis = swap_input_axis
self.transform = transform
if channel_mask is None:
channel_mask = ... #'...' means 'take all channels'
self.channel_mask = channel_mask
if background_generator in self.BCG_GENERATORS:
self.background_generator = self.BCG_GENERATORS[background_generator]
else:
assert callable(background_generator)
self.background_generator = background_generator
def __call__(self, file_name):
"""prepare tensor from numpy file """
img_in = np.load(file_name)
if self.swap_input_axis:
img_in = np.moveaxis(img_in, 2, 0)
img_in = img_in[self.channel_mask]
#generate background and paste input file inside
if self.background_generator is not None:
img = self.background_generator(self.img_shape, img_in)
assert (img.shape[1] >= img_in.shape[1]) and (img.shape[2] >= img_in.shape[2])
margin_top = (img.shape[1] - img_in.shape[1])//2
margin_left = (img.shape[2] - img_in.shape[2])//2
img[:,margin_top:margin_top+img_in.shape[1], margin_left:margin_left+img_in.shape[2]] = img_in
else:
img = img_in
tensor = torch.tensor(img, dtype=torch.float32)
if tensor.ndim == 2:
tensor = tensor.unsqueeze(0)
if self.transform is not None:
tensor = self.transform(tensor)
return tensor
class NumpyCropsDataset(torch.utils.data.Dataset):
"""
metadata: file_name, label
"""
def __init__(self, data_dir, metadata,
img_shape=(48, 48),
swap_input_axis=True, #for h,w,c input (h,w,c -> c,h,w)
transform=None,
target_transform=None,
channel_mask=None,
indices=None,
background_generator='zero',
class_names = ['B', 'T']
):
self.data_dir = Path(data_dir)
if isinstance(metadata, pd.DataFrame):
self.metadata = metadata
else:
self.metadata = pd.read_csv(metadata)
self.numpy_to_tensor = NumpyCropToTensor(
img_shape, swap_input_axis, transform, channel_mask, background_generator
)
self.class_name_to_number = {name: i for i, name in enumerate(class_names)}
self.target_transform = target_transform
if indices is None:
indices = np.arange(len(self.metadata))
self.indices = indices
def __getitem__(self, idx_raw):
idx = self.indices[idx_raw]
metadata = self.metadata.iloc[idx]
fn = metadata['file_name']
#prepare image
tensor = self.numpy_to_tensor(self.data_dir / fn)
#prepare target
target = self.class_name_to_number[metadata.get('label')]
if self.target_transform is not None:
target = self.target_transform(target)
return tensor, target
def __len__(self):
return len(self.indices)
def subsample_pixels(ds):
datasets = []
for i in [0,1]:
for j in [0,1]:
ds_new = deepcopy(ds)
ds_new.numpy_transform = lambda img: np.kron(img[i::2,j::2], np.ones((2,2,1))) #partial(subsample_and_expand, i=i, j=j)
datasets.append(ds_new)
ds_out = torch.utils.data.ConcatDataset(datasets=datasets)
ds_out.metadata = ds.metadata
return ds_out
class NumpyCropsDM(pl.LightningDataModule):
def __init__(self, data_config, batch_size=32, num_workers=0):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.setup_data(data_config)
def setup_data(self, data_config):
self.data_config = data_config
metadata = pd.read_csv(data_config['metadata_file'])
data_dir = data_config['data_dir']
self.transform_train = get_augmentation_tv(data_config['transform_train']+data_config['normalization'])
self.transform_test = get_augmentation_tv(data_config['transform_test']+data_config['normalization'])
self.metadata_train = metadata.iloc[data_config['train_indices']]
self.metadata_test = metadata.iloc[data_config['test_indices']]
self.class_names = data_config['class_names']
self.channel_mask = data_config['channel_mask']
self.dataset_train = NumpyCropsDataset(data_dir, self.metadata_train, transform=self.transform_train, class_names=self.class_names, channel_mask=self.channel_mask, **data_config['dataset_kwargs'])
self.dataset_val = NumpyCropsDataset(data_dir, self.metadata_test, transform=self.transform_test, class_names=self.class_names, channel_mask=self.channel_mask, **data_config['dataset_kwargs'])
subsample_pixels_config = data_config.get('subsample_pixels', {'train': False, 'test': False})
if subsample_pixels_config['train']:
self.dataset_train = subsample_pixels(self.dataset_train)
if subsample_pixels_config['test']:
self.dataset_val = subsample_pixels(self.dataset_val)
def train_dataloader(self):
return torch.utils.data.DataLoader(self.dataset_train,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers
)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.dataset_val,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers
)