forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_collectors_benchmark.py
182 lines (152 loc) · 4.68 KB
/
test_collectors_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import pytest
import torch.cuda
from torchrl.collectors import SyncDataCollector
from torchrl.collectors.collectors import (
MultiaSyncDataCollector,
MultiSyncDataCollector,
RandomPolicy,
)
from torchrl.envs import EnvCreator, StepCounter, TransformedEnv
from torchrl.envs.libs.dm_control import DMControlEnv
def single_collector_setup():
device = "cuda:0" if torch.cuda.device_count() else "cpu"
env = TransformedEnv(DMControlEnv("cheetah", "run", device=device), StepCounter(50))
c = SyncDataCollector(
env,
RandomPolicy(env.action_spec),
total_frames=-1,
frames_per_batch=100,
device=device,
)
c = iter(c)
for i, _ in enumerate(c):
if i == 10:
break
return ((c,), {})
def sync_collector_setup():
device = "cuda:0" if torch.cuda.device_count() else "cpu"
env = EnvCreator(
lambda: TransformedEnv(
DMControlEnv("cheetah", "run", device=device), StepCounter(50)
)
)
c = MultiSyncDataCollector(
[env, env],
RandomPolicy(env().action_spec),
total_frames=-1,
frames_per_batch=100,
device=device,
)
c = iter(c)
for i, _ in enumerate(c):
if i == 10:
break
return ((c,), {})
def async_collector_setup():
device = "cuda:0" if torch.cuda.device_count() else "cpu"
env = EnvCreator(
lambda: TransformedEnv(
DMControlEnv("cheetah", "run", device=device), StepCounter(50)
)
)
c = MultiaSyncDataCollector(
[env, env],
RandomPolicy(env().action_spec),
total_frames=-1,
frames_per_batch=100,
device=device,
)
c = iter(c)
for i, _ in enumerate(c):
if i == 10:
break
return ((c,), {})
def single_collector_setup_pixels():
device = "cuda:0" if torch.cuda.device_count() else "cpu"
env = TransformedEnv(
DMControlEnv("cheetah", "run", device=device, from_pixels=True), StepCounter(50)
)
c = SyncDataCollector(
env,
RandomPolicy(env.action_spec),
total_frames=-1,
frames_per_batch=100,
device=device,
)
c = iter(c)
for i, _ in enumerate(c):
if i == 10:
break
return ((c,), {})
def sync_collector_setup_pixels():
device = "cuda:0" if torch.cuda.device_count() else "cpu"
env = EnvCreator(
lambda: TransformedEnv(
DMControlEnv("cheetah", "run", device=device, from_pixels=True),
StepCounter(50),
)
)
c = MultiSyncDataCollector(
[env, env],
RandomPolicy(env().action_spec),
total_frames=-1,
frames_per_batch=100,
device=device,
)
c = iter(c)
for i, _ in enumerate(c):
if i == 10:
break
return ((c,), {})
def async_collector_setup_pixels():
device = "cuda:0" if torch.cuda.device_count() else "cpu"
env = EnvCreator(
lambda: TransformedEnv(
DMControlEnv("cheetah", "run", device=device, from_pixels=True),
StepCounter(50),
)
)
c = MultiaSyncDataCollector(
[env, env],
RandomPolicy(env().action_spec),
total_frames=-1,
frames_per_batch=100,
device=device,
)
c = iter(c)
for i, _ in enumerate(c):
if i == 10:
break
return ((c,), {})
def execute_collector(c):
# will run for 9 iterations (1 during setup)
next(c)
def test_single(benchmark):
(c,), _ = single_collector_setup()
benchmark(execute_collector, c)
def test_sync(benchmark):
(c,), _ = sync_collector_setup()
benchmark(execute_collector, c)
def test_async(benchmark):
(c,), _ = async_collector_setup()
benchmark(execute_collector, c)
@pytest.mark.skipif(not torch.cuda.device_count(), reason="no rendering without cuda")
def test_single_pixels(benchmark):
(c,), _ = single_collector_setup_pixels()
benchmark(execute_collector, c)
@pytest.mark.skipif(not torch.cuda.device_count(), reason="no rendering without cuda")
def test_sync_pixels(benchmark):
(c,), _ = sync_collector_setup_pixels()
benchmark(execute_collector, c)
@pytest.mark.skipif(not torch.cuda.device_count(), reason="no rendering without cuda")
def test_async_pixels(benchmark):
(c,), _ = async_collector_setup_pixels()
benchmark(execute_collector, c)
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)