forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_replaybuffer_benchmark.py
146 lines (125 loc) · 4.72 KB
/
test_replaybuffer_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import pytest
import torch
from tensordict import TensorDict
from torchrl.data import (
LazyMemmapStorage,
LazyTensorStorage,
ListStorage,
TensorDictPrioritizedReplayBuffer,
TensorDictReplayBuffer,
)
from torchrl.data.replay_buffers import RandomSampler, SamplerWithoutReplacement
class create_rb:
def __init__(self, rb, storage, sampler, populated, size=1_000_000):
self.storage = storage
self.rb = rb
self.sampler = sampler
self.populated = populated
self.size = size
def __call__(self):
kwargs = {"batch_size": 256}
if self.sampler is not None:
kwargs["sampler"] = self.sampler()
if self.storage is not None:
kwargs["storage"] = self.storage(self.size)
rb = self.rb(**kwargs)
data = TensorDict(
{
"a": torch.zeros(self.size, 5),
("b", "c"): torch.zeros(self.size, 3, 32, 32, dtype=torch.uint8),
},
batch_size=[self.size],
)
if self.populated:
rb.extend(data)
return ((rb,), {})
else:
return ((rb, data), {})
def populate(rb, td):
rb.extend(td)
def sample(rb):
rb.sample()
def iterate(rb):
for _ in rb:
break
@pytest.mark.parametrize(
"rb,storage,sampler,size",
[
[TensorDictReplayBuffer, ListStorage, RandomSampler, 4000],
[TensorDictReplayBuffer, LazyMemmapStorage, RandomSampler, 10_000],
[TensorDictReplayBuffer, LazyTensorStorage, RandomSampler, 10_000],
[TensorDictReplayBuffer, ListStorage, SamplerWithoutReplacement, 4000],
[TensorDictReplayBuffer, LazyMemmapStorage, SamplerWithoutReplacement, 10_000],
[TensorDictReplayBuffer, LazyTensorStorage, SamplerWithoutReplacement, 10_000],
[TensorDictPrioritizedReplayBuffer, ListStorage, None, 4000],
[TensorDictPrioritizedReplayBuffer, LazyMemmapStorage, None, 10_000],
[TensorDictPrioritizedReplayBuffer, LazyTensorStorage, None, 10_000],
],
)
def test_sample_rb(benchmark, rb, storage, sampler, size):
(rb,), _ = create_rb(
rb=TensorDictReplayBuffer,
storage=ListStorage,
sampler=RandomSampler,
populated=True,
size=size,
)()
benchmark(sample, rb)
@pytest.mark.parametrize(
"rb,storage,sampler,size",
[
[TensorDictReplayBuffer, ListStorage, RandomSampler, 4000],
[TensorDictReplayBuffer, LazyMemmapStorage, RandomSampler, 10_000],
[TensorDictReplayBuffer, LazyTensorStorage, RandomSampler, 10_000],
[TensorDictReplayBuffer, ListStorage, SamplerWithoutReplacement, 4000],
[TensorDictReplayBuffer, LazyMemmapStorage, SamplerWithoutReplacement, 10_000],
[TensorDictReplayBuffer, LazyTensorStorage, SamplerWithoutReplacement, 10_000],
[TensorDictPrioritizedReplayBuffer, ListStorage, None, 4000],
[TensorDictPrioritizedReplayBuffer, LazyMemmapStorage, None, 10_000],
[TensorDictPrioritizedReplayBuffer, LazyTensorStorage, None, 10_000],
],
)
def test_iterate_rb(benchmark, rb, storage, sampler, size):
(rb,), _ = create_rb(
rb=TensorDictReplayBuffer,
storage=ListStorage,
sampler=RandomSampler,
populated=True,
size=size,
)()
benchmark(iterate, rb)
@pytest.mark.parametrize(
"rb,storage,sampler,size",
[
[TensorDictReplayBuffer, ListStorage, RandomSampler, 400],
[TensorDictReplayBuffer, LazyMemmapStorage, RandomSampler, 400],
[TensorDictReplayBuffer, LazyTensorStorage, RandomSampler, 400],
[TensorDictReplayBuffer, ListStorage, SamplerWithoutReplacement, 400],
[TensorDictReplayBuffer, LazyMemmapStorage, SamplerWithoutReplacement, 400],
[TensorDictReplayBuffer, LazyTensorStorage, SamplerWithoutReplacement, 400],
[TensorDictPrioritizedReplayBuffer, ListStorage, None, 400],
[TensorDictPrioritizedReplayBuffer, LazyMemmapStorage, None, 400],
[TensorDictPrioritizedReplayBuffer, LazyTensorStorage, None, 400],
],
)
def test_populate_rb(benchmark, rb, storage, sampler, size):
benchmark.pedantic(
populate,
setup=create_rb(
rb=TensorDictReplayBuffer,
storage=ListStorage,
sampler=RandomSampler,
populated=False,
size=size,
),
iterations=1,
rounds=50,
)
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)