-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtopMulti.m
348 lines (322 loc) · 14.2 KB
/
topMulti.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
function [cO,xdensO,xcosO,xsinO,xcubO]=topMulti(nelx,nely,volfrac,initialDesign,problem)
% USER-DEFINED MODEL PARAMETERS
%nelx : number of cells in horizontal direction
%nely : number of cells in vertical direction
%volfrac : global volume fraction
rmin = 1.5; %filtering radius
fsum=1.0; %force value
xMin = 0; %minimum cell density
xMax = 1; %maximum cell density
global B database sig;
sig=0.04; %gaussion kernel radius
B = func_B();
load('database32-32-32.mat'); % cell elastic tensor database
database=dbMat;
% USER-DEFINED LOOP PARAMETERS
maxloopaftermin=5; % Maximum number of iterations without a new global minimum
maxloop=100; % Maximum number of iterations
tolx = 0.001; % Terminarion criterion
switch problem
case 'MBB'
% USER-DEFINED LOAD DOFs
loadnid = 1; % Node IDs
loaddof = 2*loadnid(:) ; % DOFs
% USER-DEFINED SUPPORT FIXED DOFs
fixednid_1 = 1:(nely+1); % Node IDs
fixednid_2 = (nelx+1)*(nely+1); % Node IDs
fixeddof = [2*fixednid_1(:)-1;2*fixednid_2(:)]; % DOFs
% USER-DEFINED ACTIVE ELEMENTS
activeelts=ones(nelx*nely,1);
case 'Canti'
% USER-DEFINED LOAD DOFs
loadnid = nelx*(nely+1)+nely/2+1; % Node IDs
loaddof = 2*loadnid(:) ; % DOFs
% USER-DEFINED SUPPORT FIXED DOFs
fixednid_1 = 1:(nely+1); % Node IDs
fixednid_2 = fixednid_1; % Node IDs
fixeddof = [2*fixednid_1(:)-1;2*fixednid_2(:)]; % DOFs
% USER-DEFINED ACTIVE ELEMENTS
activeelts=ones(nelx*nely,1);
case 'Lshape'
% USER-DEFINED LOAD DOFs
loadnid = nelx*(nely+1)+nely/2+1; % Node IDs
loaddof = 2*loadnid(:) ; % DOFs
% USER-DEFINED SUPPORT FIXED DOFs
fixednid_1 = 1:(nely+1):(nelx/2)*(nely+1)+1; % Node IDs
fixednid_2 = fixednid_1; % Node IDs
fixeddof = [2*fixednid_1(:)-1;2*fixednid_2(:)]; % DOFs
% USER-DEFINED ACTIVE ELEMENTS
emptyelts=(nelx/2)*(nely)+1:(nelx)*(nely);
emptyelts=reshape(emptyelts, nely,nelx/2);
emptyelts=emptyelts(1:nely/2,:);
emptyelts=emptyelts(:);
activeelts=ones(nelx*nely,1);
activeelts(emptyelts)=0;
end
% PREPARE FINITE ELEMENT ANALYSIS
nele = nelx*nely;
ndof = 2*(nelx+1)*(nely+1);
F = sparse(loaddof,1,-fsum,ndof,1);
U = zeros(ndof,1);
freedofs = setdiff(1:ndof,fixeddof);
volfrac=volfrac*mean(activeelts);
nodenrs = reshape(1:(nely+1)*(nelx+1),nely+1,nelx+1);
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
% PREPARE FILTER
iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1;
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2;
k = k+1;
iH(k) = e1;
jH(k) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
end
end
end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2);
% INITIALIZE ITERATION
if initialDesign=="top88"
switch problem
case 'MBB'
xdens = top88DesignMBB(nelx,nely,volfrac,2,1.2,2); xcos = repmat(1, [nely, nelx]); xsin = repmat(1, [nely, nelx]); xcub = repmat(0.5, [nely, nelx]);
case 'Canti'
xdens = top88DesignCanti(nelx,nely,volfrac,2,1.2,2); xcos = repmat(1, [nely, nelx]); xsin = repmat(1, [nely, nelx]); xcub = repmat(0.5, [nely, nelx]);
case 'Lshape'
xdens = top88DesignL(nelx,nely,volfrac/mean(activeelts),2,1.2,2); xcos = repmat(1, [nely, nelx]); xsin = repmat(1, [nely, nelx]); xcub = repmat(0.5, [nely, nelx]);
end
elseif initialDesign=="volfrac"
xdens = repmat(volfrac, [nely, nelx]); xcos = repmat(1, [nely, nelx]); xsin = repmat(1, [nely, nelx]); xcub = repmat(0.5, [nely, nelx]);
end
xdensPhys = xdens; xcosPhys = xcos; xsinPhys = xsin; xcubPhys = xcub;
loop = 0; change = 1; loopaftermin=0;
% INITIALIZE MMA OPTIMIZER
m = 1; n = 4*nele;
xmin = [xMin*ones(nele,1); zeros(nele,1); zeros(nele,1); zeros(nele,1)]; % Column vector with the lower bounds for the macro-variables.
xmax = [xMax*ones(nele,1); ones(nele,1); ones(nele,1); ones(nele,1)]; % Column vector with the upper bounds for the macro-variables.
xval = [xdensPhys(:); xcosPhys(:); xsinPhys(:); xcubPhys(:)]; % macro-variables
xold1 = xval(:); xold2 = xold1(:);
low = ones(n,1); upp = ones(n,1);
a0 = 1; a_mma = zeros(m,1); c_mma = 5000*ones(m,1); d_mma = zeros(m,1);
%INITIALIZE GLOBAL OPTIMUM
xdensO=zeros(nely,nelx);
xcosO=zeros(nely,nelx);
xsinO=zeros(nely,nelx);
xcubO=zeros(nely,nelx);
cO=inf;
ceO=zeros(nely,nelx);
% START ITERATION
while change > tolx && loop < maxloop && loopaftermin < maxloopaftermin
loop = loop+1;
loopaftermin = loopaftermin+1;
% FE-ANALYSIS AND SENSITIVITY ANALYSIS
[K_cell, K_dxdens_cell, K_dxcos_cell, K_dxsin_cell, K_dxcub_cell] = arrayfun(@KE_matrix, xdensPhys(:)', xcosPhys(:)', xsinPhys(:)', xcubPhys(:)', 'un', 0);
KALL = reshape(cell2mat(K_cell), [8*8, nele]);
sK = reshape(KALL, 8*8*nele, 1);
K = sparse(iK,jK,sK); K = (K+K')/2;
U(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:);
if max(max(abs(U)))>2000
U=2000*U/max(max(abs(U))); % rescale U if it is too big for MMA to handle properly
end
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
F_nodes = cell2mat(cellfun(@(x,y)x*y, num2cell(U(edofMat),2)', K_cell,'un', 0)');
ce = reshape(sum(F_nodes.*U(edofMat), 2), [nely, nelx]);
c = sum(sum(ce));
%SAVE GLOBAL OPTIMUM
if mean(xdensPhys(:)) <= volfrac && c < cO
xdensO=xdens;
xcosO=xcos;
xsinO=xsin;
xcubO=xcub;
cO=c;
ceO=ce;
loopaftermin = 0;
end
F_dxdens_nodes = cell2mat(cellfun(@(x,y)x*y, num2cell(U(edofMat),2)', K_dxdens_cell,'un', 0)');
ce_dxdens = reshape(sum(F_dxdens_nodes.*U(edofMat), 2), [nely, nelx]);
dc_xdens = -ce_dxdens;
F_dxcos_nodes = cell2mat(cellfun(@(x,y)x*y, num2cell(U(edofMat),2)', K_dxcos_cell,'un', 0)');
ce_dxcos = reshape(sum(F_dxcos_nodes.*U(edofMat), 2), [nely, nelx]);
dc_xcos = -ce_dxcos;
F_dxsin_nodes = cell2mat(cellfun(@(x,y)x*y, num2cell(U(edofMat),2)', K_dxsin_cell,'un', 0)');
ce_dxsin = reshape(sum(F_dxsin_nodes.*U(edofMat), 2), [nely, nelx]);
dc_xsin = -ce_dxsin;
F_dxcub_nodes = cell2mat(cellfun(@(x,y)x*y, num2cell(U(edofMat),2)', K_dxcub_cell,'un', 0)');
ce_dxcub = reshape(sum(F_dxcub_nodes.*U(edofMat), 2), [nely, nelx]);
dc_xcub = -ce_dxcub;
dv_x = ones(nely,nelx);
% FILTERING AND MODIFICATION OF SENSITIVITIES
dc_xdens(:) = H*(xdens(:).*dc_xdens(:))./Hs./max(1e-4,xdens(:));
% MMA OPTIMIZATION METHOD
f0val = c; df0dx = [dc_xdens(:).*activeelts; dc_xcos(:).*activeelts; dc_xsin(:).*activeelts; dc_xcub(:).*activeelts];
fval = sum(xdensPhys(:))/(volfrac*nele) - 1;
dfdx = [(dv_x(:).*activeelts)'/(volfrac*nele), zeros(1,nele), zeros(1,nele), zeros(1,nele)];
[xmma,~,~,~,~,~,~,~,~,low,upp] = ...
mmasub(m,n,loop,xval,xmin,xmax,xold1,xold2, ...
f0val,df0dx,fval,dfdx,low,upp,a0,a_mma,c_mma,d_mma);
xold2 = xold1; xold1 = xval; change = max(abs(xmma-xval)); xval = xmma;
xdensnew = reshape(xval(1:nele), nely, nelx);
xcosnew = reshape(xval(nele+1:2*nele), nely, nelx);
xsinnew = reshape(xval(2*nele+1:3*nele), nely, nelx);
xcubnew = reshape(xval(3*nele+1:4*nele), nely, nelx);
% FILTERING AND MODIFICATION OF VARIABLES
xdensnew(:) = xdensnew(:).*activeelts;
xcosnew(:) = (H*xcosnew(:))./Hs; xcosnew(xcosnew > 1.0) = 1.0;
xsinnew(:) = (H*xsinnew(:))./Hs; xsinnew(xsinnew > 1.0) = 1.0;
xcubnew(:) = H*(xcubnew(:)./Hs); xcubnew(xcubnew > 1.0) = 1.0;
xdens = xdensnew; xcos = xcosnew; xsin = xsinnew; xcub = xcubnew;
% PRINT RESULTS
fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f \n',loop,c,mean(xdensPhys(:)),change);
xdensPhys = xdens; xcosPhys = xcos; xsinPhys = xsin; xcubPhys = xcub;
figure(1)
colormap(gray); imagesc(1-xdensPhys); caxis([0 1]); axis equal; axis off; drawnow;
figure(2)
colormap(gray); imagesc(1-xcosPhys.*reshape(activeelts,nely,nelx)); caxis([0 1]); axis equal; axis off; drawnow;
figure(3)
colormap(gray); imagesc(1-xsinPhys.*reshape(activeelts,nely,nelx)); caxis([0 1]); axis equal; axis off; drawnow;
figure(4)
colormap(gray); imagesc(1-xcubPhys.*reshape(activeelts,nely,nelx)); caxis([0 1]); axis equal; axis off; drawnow;
end
end
% GEOMETRIC MATRIX B USED IN STIFFNESS MATRIX CALCULATION
function B = func_B()
syms s t;
N1 = (1-s)*(1-t)/4; N2 = (1+s)*(1-t)/4;
N3 = (1+s)*(1+t)/4; N4 = (1-s)*(1+t)/4;
Ns = [N1, N2, N3, N4];
Bs = sym(zeros(3,2,4));
for i = 1:4
Bs(:,:,i) = [[diff(Ns(i),s) 0];[0 diff(Ns(i),t)];[diff(Ns(i),t) diff(Ns(i),s)]];
end
B = [Bs(:,:,1),Bs(:,:,2),Bs(:,:,3),Bs(:,:,4)];
B = matlabFunction(B);
end
% CALCULATION OF STIFFNESS MATRIX AND ITS FOUR PARTIAL DERIVATIVES
% The stiffness matrix and derivatives depends on the cell microstructure, defined by the
% macro-variables
function [KE, KE_dxdens, KE_dxcos, KE_dxsin, KE_dxcub] = KE_matrix(xdens, xcos, xsin, xcub)
global B database sig;
%% get point's tensor and derivatives
xdensd=xdens+0.01; %xdens+delta used to get the partial derivative approximation
negdifdens=1;
if xdensd>1 %if right partial derivative isn't accessible, get left partial derivative
xdensd=xdensd-0.02;
negdifdens=-1;
end
xcubd=xcub+0.01; %xcub+delta used to get the partial derivatives
negdifcub=1;
if xcubd>1 %if right partial derivative isn't accessible, get left partial derivative
xcubd=xcubd-0.02;
negdifcub=-1;
end
%derive xor from xcos and xsin.
cosalpha=2*xcos-1; sinalpha=2*xsin-1;
xor=atan(sinalpha/cosalpha)/pi; %Here, xor is in [-1,1], representing an orientation angle in [-pi,pi]
%put the orientation angle in [0,pi]
if xor<0
xor=xor+1;
end
xord=xor+0.01; %xcor+delta used to get the partial derivatives
negdifor=1;
if xord>1 %if right partial derivative isn't accessible, get left partial derivative
xord=xord-0.02;
negdifor=-1;
end
%macrovariables for xi, xi', xi'' and xi'''
xdensv=[xdens, xdensd, xdens, xdens];
xorv=[xor, xor, xord, xor];
xcubv=[xcub, xcub, xcub, xcubd];
d11=[];
d12=[];
d13=[];
d22=[];
d23=[];
d33=[];
% GET ELASTICITY TENSORS FROM DATABASE METAMODEL FOR Xi, Xi', Xi'' and Xi'''
for i = 1:4
% find points in matrix within 3 kernel radii
xdenslim1=max(1,round((xdensv(i)-3*sig)*(size(database,4)-1)+1));
xdenslim2=min(size(database,4),round((xdensv(i)+3*sig)*(size(database,4)-1)+1));
xorlim1=max(1,round((xorv(i)-3*sig)*(size(database,3)-1)+1));
xorlim2=min(size(database,3),round((xorv(i)+3*sig)*(size(database,3)-1)+1));
xcublim1=max(1,round((xcubv(i)-3*sig)*(size(database,2)-1)+1));
xcublim2=min(size(database,2),round((xcubv(i)+3*sig)*(size(database,2)-1)+1));
Msim=database(:,xcublim1:xcublim2,xorlim1:xorlim2,xdenslim1:xdenslim2);
%get distance of each point
distance=sqrt((Msim(1,:,:,:)-xdensv(i)).^2+(Msim(2,:,:,:)-xorv(i)).^2+(Msim(3,:,:,:)-xcubv(i)).^2);
%Nadaraya-Watson kernel-weighted average
gaussFactor = (1/((2*pi*sig^2)^(3/2)))*exp(-((distance).^2)./(2*sig^2));
gaussFactors = repmat(gaussFactor,6,1,1,1);
totalGauss=sum(sum(sum(gaussFactor)));
pointGauss=sum(sum(sum(Msim(4:end,:,:,:).*gaussFactors,2), 3), 4)/totalGauss;
d11 = [d11,pointGauss(1)];
d12 = [d12,pointGauss(2)];
d13 = [d13,pointGauss(3)];
d22 = [d22,pointGauss(4)];
d23 = [d23,pointGauss(5)];
d33 = [d33,pointGauss(6)];
end
%Approximate partial derivatives
d11ddens=negdifdens*(d11(2)-d11(1))/0.01;
d12ddens=negdifdens*(d12(2)-d12(1))/0.01;
d13ddens=negdifdens*(d13(2)-d13(1))/0.01;
d22ddens=negdifdens*(d22(2)-d22(1))/0.01;
d23ddens=negdifdens*(d23(2)-d23(1))/0.01;
d33ddens=negdifdens*(d33(2)-d33(1))/0.01;
d11dor=negdifor*(d11(3)-d11(1))/0.01;
d12dor=negdifor*(d12(3)-d12(1))/0.01;
d13dor=negdifor*(d13(3)-d13(1))/0.01;
d22dor=negdifor*(d22(3)-d22(1))/0.01;
d23dor=negdifor*(d23(3)-d23(1))/0.01;
d33dor=negdifor*(d33(3)-d33(1))/0.01;
d11dcub=negdifcub*(d11(4)-d11(1))/0.01;
d12dcub=negdifcub*(d12(4)-d12(1))/0.01;
d13dcub=negdifcub*(d13(4)-d13(1))/0.01;
d22dcub=negdifcub*(d22(4)-d22(1))/0.01;
d23dcub=negdifcub*(d23(4)-d23(1))/0.01;
d33dcub=negdifcub*(d33(4)-d33(1))/0.01;
D = [d11(1), d12(1), d13(1);
d12(1), d22(1), d23(1);
d13(1), d23(1), d33(1)];
D_dxdens = [d11ddens, d12ddens, d13ddens;
d12ddens, d22ddens, d23ddens;
d13ddens, d23ddens, d33ddens];
D_dxor = [d11dor, d12dor, d13dor;
d12dor, d22dor, d23dor;
d13dor, d23dor, d33dor];
D_dxcub = [d11dcub, d12dcub, d13dcub;
d12dcub, d22dcub, d23dcub;
d13dcub, d23dcub, d33dcub];
%DERIVE STIFFNESS MATRIX FROM ELASTICITY TENSOR
%get gauss points weights and positions
x = [-sqrt(3)/3, sqrt(3)/3]; % gauss point positions
w = [1,1]; % gauss point weights
ke = zeros(8);
ke_dxdens = zeros(8);
ke_dxor = zeros(8);
ke_dxcub = zeros(8);
[i, j] = meshgrid(1:2, 1:2);
for m = 1:4
ke = ke + w(i(m))*w(j(m))*B(x(i(m)), x(j(m)))' * D * B(x(i(m)), x(j(m)));
ke_dxdens = ke_dxdens + w(i(m))*w(j(m))*B(x(i(m)), x(j(m)))' * D_dxdens * B(x(i(m)), x(j(m)));
ke_dxor = ke_dxor + w(i(m))*w(j(m))*B(x(i(m)), x(j(m)))' * D_dxor * B(x(i(m)), x(j(m)));
ke_dxcub = ke_dxcub + w(i(m))*w(j(m))*B(x(i(m)), x(j(m)))' * D_dxcub * B(x(i(m)), x(j(m)));
end
ke_dxor=ke_dxor/pi;
ke_dxcosalpha=ke_dxor*(-sinalpha/(cosalpha^2+sinalpha^2));
ke_dxcos=2*ke_dxcosalpha;
ke_dxsinalpha=ke_dxor*(cosalpha/(cosalpha^2+sinalpha^2));
ke_dxsin=2*ke_dxsinalpha;
KE = ke; KE_dxdens = ke_dxdens; KE_dxcos = ke_dxcos; KE_dxsin = ke_dxsin; KE_dxcub = ke_dxcub;
end