-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkmeans.go
258 lines (220 loc) · 9.28 KB
/
kmeans.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
package mlpack
/*
#cgo CFLAGS: -I./capi -Wall
#cgo LDFLAGS: -L. -lmlpack_go_kmeans
#include <capi/kmeans.h>
#include <stdlib.h>
*/
import "C"
import "gonum.org/v1/gonum/mat"
type KmeansOptionalParam struct {
Algorithm string
AllowEmptyClusters bool
InPlace bool
InitialCentroids *mat.Dense
KillEmptyClusters bool
KmeansPlusPlus bool
LabelsOnly bool
MaxIterations int
Percentage float64
RefinedStart bool
Samplings int
Seed int
Verbose bool
}
func KmeansOptions() *KmeansOptionalParam {
return &KmeansOptionalParam{
Algorithm: "naive",
AllowEmptyClusters: false,
InPlace: false,
InitialCentroids: nil,
KillEmptyClusters: false,
KmeansPlusPlus: false,
LabelsOnly: false,
MaxIterations: 1000,
Percentage: 0.02,
RefinedStart: false,
Samplings: 100,
Seed: 0,
Verbose: false,
}
}
/*
This program performs K-Means clustering on the given dataset. It can return
the learned cluster assignments, and the centroids of the clusters. Empty
clusters are not allowed by default; when a cluster becomes empty, the point
furthest from the centroid of the cluster with maximum variance is taken to
fill that cluster.
Optionally, the strategy to choose initial centroids can be specified. The
k-means++ algorithm can be used to choose initial centroids with the
"KmeansPlusPlus" parameter. The Bradley and Fayyad approach ("Refining
initial points for k-means clustering", 1998) can be used to select initial
points by specifying the "RefinedStart" parameter. This approach works by
taking random samplings of the dataset; to specify the number of samplings,
the "Samplings" parameter is used, and to specify the percentage of the
dataset to be used in each sample, the "Percentage" parameter is used (it
should be a value between 0.0 and 1.0).
There are several options available for the algorithm used for each Lloyd
iteration, specified with the "Algorithm" option. The standard O(kN)
approach can be used ('naive'). Other options include the Pelleg-Moore
tree-based algorithm ('pelleg-moore'), Elkan's triangle-inequality based
algorithm ('elkan'), Hamerly's modification to Elkan's algorithm ('hamerly'),
the dual-tree k-means algorithm ('dualtree'), and the dual-tree k-means
algorithm using the cover tree ('dualtree-covertree').
The behavior for when an empty cluster is encountered can be modified with the
"AllowEmptyClusters" option. When this option is specified and there is a
cluster owning no points at the end of an iteration, that cluster's centroid
will simply remain in its position from the previous iteration. If the
"KillEmptyClusters" option is specified, then when a cluster owns no points at
the end of an iteration, the cluster centroid is simply filled with DBL_MAX,
killing it and effectively reducing k for the rest of the computation. Note
that the default option when neither empty cluster option is specified can be
time-consuming to calculate; therefore, specifying either of these parameters
will often accelerate runtime.
Initial clustering assignments may be specified using the "InitialCentroids"
parameter, and the maximum number of iterations may be specified with the
"MaxIterations" parameter.
As an example, to use Hamerly's algorithm to perform k-means clustering with
k=10 on the dataset data, saving the centroids to centroids and the
assignments for each point to assignments, the following command could be
used:
// Initialize optional parameters for Kmeans().
param := mlpack.KmeansOptions()
centroids, assignments := mlpack.Kmeans(data, 10, param)
To run k-means on that same dataset with initial centroids specified in
initial with a maximum of 500 iterations, storing the output centroids in
final the following command may be used:
// Initialize optional parameters for Kmeans().
param := mlpack.KmeansOptions()
param.InitialCentroids = initial
param.MaxIterations = 500
final, _ := mlpack.Kmeans(data, 10, param)
Input parameters:
- clusters (int): Number of clusters to find (0 autodetects from
initial centroids).
- input (mat.Dense): Input dataset to perform clustering on.
- Algorithm (string): Algorithm to use for the Lloyd iteration
('naive', 'pelleg-moore', 'elkan', 'hamerly', 'dualtree', or
'dualtree-covertree'). Default value 'naive'.
- AllowEmptyClusters (bool): Allow empty clusters to be persist.
- InPlace (bool): If specified, a column containing the learned cluster
assignments will be added to the input dataset file. In this case,
--output_file is overridden. (Do not use in Python.)
- InitialCentroids (mat.Dense): Start with the specified initial
centroids.
- KillEmptyClusters (bool): Remove empty clusters when they occur.
- KmeansPlusPlus (bool): Use the k-means++ initialization strategy to
choose initial points.
- LabelsOnly (bool): Only output labels into output file.
- MaxIterations (int): Maximum number of iterations before k-means
terminates. Default value 1000.
- Percentage (float64): Percentage of dataset to use for each refined
start sampling (use when --refined_start is specified). Default value
0.02.
- RefinedStart (bool): Use the refined initial point strategy by
Bradley and Fayyad to choose initial points.
- Samplings (int): Number of samplings to perform for refined start
(use when --refined_start is specified). Default value 100.
- Seed (int): Random seed. If 0, 'std::time(NULL)' is used. Default
value 0.
- Verbose (bool): Display informational messages and the full list of
parameters and timers at the end of execution.
Output parameters:
- centroid (mat.Dense): If specified, the centroids of each cluster
will be written to the given file.
- output (mat.Dense): Matrix to store output labels or labeled data
to.
*/
func Kmeans(clusters int, input *mat.Dense, param *KmeansOptionalParam) (*mat.Dense, *mat.Dense) {
params := getParams("kmeans")
timers := getTimers()
disableBacktrace()
disableVerbose()
// Detect if the parameter was passed; set if so.
setParamInt(params, "clusters", clusters)
setPassed(params, "clusters")
// Detect if the parameter was passed; set if so.
gonumToArmaMat(params, "input", input, false)
setPassed(params, "input")
// Detect if the parameter was passed; set if so.
if param.Algorithm != "naive" {
setParamString(params, "algorithm", param.Algorithm)
setPassed(params, "algorithm")
}
// Detect if the parameter was passed; set if so.
if param.AllowEmptyClusters != false {
setParamBool(params, "allow_empty_clusters", param.AllowEmptyClusters)
setPassed(params, "allow_empty_clusters")
}
// Detect if the parameter was passed; set if so.
if param.InPlace != false {
setParamBool(params, "in_place", param.InPlace)
setPassed(params, "in_place")
}
// Detect if the parameter was passed; set if so.
if param.InitialCentroids != nil {
gonumToArmaMat(params, "initial_centroids", param.InitialCentroids, false)
setPassed(params, "initial_centroids")
}
// Detect if the parameter was passed; set if so.
if param.KillEmptyClusters != false {
setParamBool(params, "kill_empty_clusters", param.KillEmptyClusters)
setPassed(params, "kill_empty_clusters")
}
// Detect if the parameter was passed; set if so.
if param.KmeansPlusPlus != false {
setParamBool(params, "kmeans_plus_plus", param.KmeansPlusPlus)
setPassed(params, "kmeans_plus_plus")
}
// Detect if the parameter was passed; set if so.
if param.LabelsOnly != false {
setParamBool(params, "labels_only", param.LabelsOnly)
setPassed(params, "labels_only")
}
// Detect if the parameter was passed; set if so.
if param.MaxIterations != 1000 {
setParamInt(params, "max_iterations", param.MaxIterations)
setPassed(params, "max_iterations")
}
// Detect if the parameter was passed; set if so.
if param.Percentage != 0.02 {
setParamDouble(params, "percentage", param.Percentage)
setPassed(params, "percentage")
}
// Detect if the parameter was passed; set if so.
if param.RefinedStart != false {
setParamBool(params, "refined_start", param.RefinedStart)
setPassed(params, "refined_start")
}
// Detect if the parameter was passed; set if so.
if param.Samplings != 100 {
setParamInt(params, "samplings", param.Samplings)
setPassed(params, "samplings")
}
// Detect if the parameter was passed; set if so.
if param.Seed != 0 {
setParamInt(params, "seed", param.Seed)
setPassed(params, "seed")
}
// Detect if the parameter was passed; set if so.
if param.Verbose != false {
setParamBool(params, "verbose", param.Verbose)
setPassed(params, "verbose")
enableVerbose()
}
// Mark all output options as passed.
setPassed(params, "centroid")
setPassed(params, "output")
// Call the mlpack program.
C.mlpackKmeans(params.mem, timers.mem)
// Initialize result variable and get output.
var centroidPtr mlpackArma
centroid := centroidPtr.armaToGonumMat(params, "centroid")
var outputPtr mlpackArma
output := outputPtr.armaToGonumMat(params, "output")
// Clean memory.
cleanParams(params)
cleanTimers(timers)
// Return output(s).
return centroid, output
}