-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnbc.go
159 lines (128 loc) · 4.94 KB
/
nbc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
package mlpack
/*
#cgo CFLAGS: -I./capi -Wall
#cgo LDFLAGS: -L. -lmlpack_go_nbc
#include <capi/nbc.h>
#include <stdlib.h>
*/
import "C"
import "gonum.org/v1/gonum/mat"
type NbcOptionalParam struct {
IncrementalVariance bool
InputModel *nbcModel
Labels *mat.Dense
Test *mat.Dense
Training *mat.Dense
Verbose bool
}
func NbcOptions() *NbcOptionalParam {
return &NbcOptionalParam{
IncrementalVariance: false,
InputModel: nil,
Labels: nil,
Test: nil,
Training: nil,
Verbose: false,
}
}
/*
This program trains the Naive Bayes classifier on the given labeled training
set, or loads a model from the given model file, and then may use that trained
model to classify the points in a given test set.
The training set is specified with the "Training" parameter. Labels may be
either the last row of the training set, or alternately the "Labels" parameter
may be specified to pass a separate matrix of labels.
If training is not desired, a pre-existing model may be loaded with the
"InputModel" parameter.
The "IncrementalVariance" parameter can be used to force the training to use
an incremental algorithm for calculating variance. This is slower, but can
help avoid loss of precision in some cases.
If classifying a test set is desired, the test set may be specified with the
"Test" parameter, and the classifications may be saved with the
"Predictions"predictions parameter. If saving the trained model is desired,
this may be done with the "OutputModel" output parameter.
For example, to train a Naive Bayes classifier on the dataset data with labels
labels and save the model to nbc_model, the following command may be used:
// Initialize optional parameters for Nbc().
param := mlpack.NbcOptions()
param.Training = data
param.Labels = labels
nbc_model, _, _ := mlpack.Nbc(param)
Then, to use nbc_model to predict the classes of the dataset test_set and save
the predicted classes to predictions, the following command may be used:
// Initialize optional parameters for Nbc().
param := mlpack.NbcOptions()
param.InputModel = &nbc_model
param.Test = test_set
_, predictions, _ := mlpack.Nbc(param)
Input parameters:
- IncrementalVariance (bool): The variance of each class will be
calculated incrementally.
- InputModel (nbcModel): Input Naive Bayes model.
- Labels (mat.Dense): A file containing labels for the training set.
- Test (mat.Dense): A matrix containing the test set.
- Training (mat.Dense): A matrix containing the training set.
- Verbose (bool): Display informational messages and the full list of
parameters and timers at the end of execution.
Output parameters:
- outputModel (nbcModel): File to save trained Naive Bayes model to.
- predictions (mat.Dense): The matrix in which the predicted labels for
the test set will be written.
- probabilities (mat.Dense): The matrix in which the predicted
probability of labels for the test set will be written.
*/
func Nbc(param *NbcOptionalParam) (nbcModel, *mat.Dense, *mat.Dense) {
params := getParams("nbc")
timers := getTimers()
disableBacktrace()
disableVerbose()
// Detect if the parameter was passed; set if so.
if param.IncrementalVariance != false {
setParamBool(params, "incremental_variance", param.IncrementalVariance)
setPassed(params, "incremental_variance")
}
// Detect if the parameter was passed; set if so.
if param.InputModel != nil {
setNBCModel(params, "input_model", param.InputModel)
setPassed(params, "input_model")
}
// Detect if the parameter was passed; set if so.
if param.Labels != nil {
gonumToArmaUrow(params, "labels", param.Labels)
setPassed(params, "labels")
}
// Detect if the parameter was passed; set if so.
if param.Test != nil {
gonumToArmaMat(params, "test", param.Test, false)
setPassed(params, "test")
}
// Detect if the parameter was passed; set if so.
if param.Training != nil {
gonumToArmaMat(params, "training", param.Training, false)
setPassed(params, "training")
}
// Detect if the parameter was passed; set if so.
if param.Verbose != false {
setParamBool(params, "verbose", param.Verbose)
setPassed(params, "verbose")
enableVerbose()
}
// Mark all output options as passed.
setPassed(params, "output_model")
setPassed(params, "predictions")
setPassed(params, "probabilities")
// Call the mlpack program.
C.mlpackNbc(params.mem, timers.mem)
// Initialize result variable and get output.
var outputModel nbcModel
outputModel.getNBCModel(params, "output_model")
var predictionsPtr mlpackArma
predictions := predictionsPtr.armaToGonumUrow(params, "predictions")
var probabilitiesPtr mlpackArma
probabilities := probabilitiesPtr.armaToGonumMat(params, "probabilities")
// Clean memory.
cleanParams(params)
cleanTimers(timers)
// Return output(s).
return outputModel, predictions, probabilities
}