-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbase_model.py
212 lines (169 loc) · 7.57 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import math
import torch
from torch.nn import Parameter
import torch.nn.functional as F
from torch_geometric.nn.conv import MessagePassing, GCNConv
from torch_geometric.utils import remove_self_loops, add_self_loops, add_remaining_self_loops, softmax
from inits import glorot, zeros, reset
from torch_scatter import scatter_add
from torch.nn import Linear
class GCN(MessagePassing):
def __init__(self, in_channels, out_channels, weight, bias,
improved=False, cached=False, normalize=True, **kwargs):
super(GCN, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.normalize = normalize
self.weight = weight
self.bias = bias
self.reset_parameters()
def reset_parameters(self):
#glorot(self.weight)
#zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_weight=None):
""""""
x = torch.matmul(x, self.weight)
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(
self.node_dim), edge_weight, self.improved, x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j if norm is not None else x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)
class GAT(MessagePassing):
def __init__(self, in_channels, out_channels, weight, att, bias, heads=1, dropout=0, concat=True,
negative_slope=0.2, **kwargs):
super(GAT, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = int(out_channels / heads)
self.heads = heads
self.concat = True
self.negative_slope = negative_slope
self.dropout = dropout
self.weight = weight
self.att = att
self.bias = bias
def forward(self, x, edge_index, size=None):
if size is None and torch.is_tensor(x):
edge_index, _ = remove_self_loops(edge_index)
edge_index, _ = add_self_loops(edge_index,
num_nodes=x.size(self.node_dim))
if torch.is_tensor(x):
x = torch.matmul(x, self.weight)
else:
x = (None if x[0] is None else torch.matmul(x[0], self.weight),
None if x[1] is None else torch.matmul(x[1], self.weight))
return self.propagate(edge_index, size=size, x=x)
def message(self, edge_index_i, x_i, x_j, size_i):
# Compute attention coefficients.
x_j = x_j.view(-1, self.heads, self.out_channels)
if x_i is None:
alpha = (x_j * self.att[:, :, self.out_channels:]).sum(dim=-1)
else:
x_i = x_i.view(-1, self.heads, self.out_channels)
alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1)
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, size_i)
# Sample attention coefficients stochastically.
alpha = F.dropout(alpha, p=self.dropout, training=self.training)
return x_j * alpha.view(-1, self.heads, 1)
def update(self, aggr_out):
if self.concat is True:
aggr_out = aggr_out.view(-1, self.heads * self.out_channels)
else:
aggr_out = aggr_out.mean(dim=1)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {}, heads={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels, self.heads)
class GIN(MessagePassing):
def __init__(self, weight, bias, weight2, bias2, **kwargs):
super(GIN, self).__init__(aggr='add', **kwargs)
self.weight = weight
self.bias = bias
self.weight2 = weight2
self.bias2 = bias2
def reset_parameters(self):
self.eps.data.fill_(self.initial_eps)
def forward(self, x, edge_index):
""""""
x = x.unsqueeze(-1) if x.dim() == 1 else x
edge_index, _ = remove_self_loops(edge_index)
out = F.linear(x + self.propagate(edge_index, x=x), self.weight, self.bias)
out = F.relu(out)
out = F.linear(out, self.weight2, self.bias2)
return out
def message(self, x_j):
return x_j
class SGC(MessagePassing):
def __init__(self, weight, bias, K=2, cached=False, **kwargs):
super(SGC, self).__init__(aggr='add', **kwargs)
self.K = K
self.cached = cached
self.weight = weight
self.bias = bias
self.reset_parameters()
def reset_parameters(self):
self.cached_result = None
self.cached_num_edges = None
def forward(self, x, edge_index, edge_weight=None):
""""""
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached:
x = F.linear(x, self.weight, self.bias)
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
edge_index, norm = GCNConv.norm(edge_index, x.size(self.node_dim),
edge_weight, dtype=x.dtype)
for k in range(self.K):
x = self.propagate(edge_index, x=x, norm=norm)
self.cached_result = x
return x
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j