-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
81 lines (63 loc) · 2.55 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from network import DQN
import random
import torch
import torch.nn as nn
import torch.optim as optim
from collections import deque
device = torch.device("cpu")
class DQNAgent:
def __init__(
self,
gamma=0.95,
epsilon=1,
epsilon_decay=0.99,
epsilon_min=0.01,
lr=1e-3,
maxlen=2000,
):
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon_min = epsilon_min
self.policy_net = DQN(21, 3).to(device)
self.target_net = DQN(21, 3).to(device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval()
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=lr)
self.loss_fn = nn.MSELoss()
self.memory = deque(maxlen=maxlen)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if random.random() <= self.epsilon:
return random.choice(list(range(1, 1 + min(state, 3))))
else:
with torch.no_grad():
tensor_state = torch.tensor([state]).to(device)
act_values = self.policy_net(tensor_state)
return torch.argmax(act_values[0]).item() + 1
def replay(self, batch_size):
if len(self.memory) < batch_size:
return
minibatch = random.sample(self.memory, batch_size)
states = torch.tensor([x[0] for x in minibatch]).to(device)
actions = torch.tensor([x[1] for x in minibatch]).unsqueeze(1).to(device)
rewards = torch.tensor([x[2] for x in minibatch]).to(
device, dtype=torch.float32
)
next_states = torch.tensor([x[3] for x in minibatch]).to(device)
dones = torch.tensor([x[4] for x in minibatch]).to(device, dtype=torch.float32)
# Get current Q values
current_q_values = self.policy_net(states).gather(1, actions - 1)
# Calculate target Q values
with torch.no_grad():
next_q_values = self.target_net(next_states)
next_max_q_values = torch.max(next_q_values, dim=1).values.detach()
target_q_values = rewards + (self.gamma * next_max_q_values * (1 - dones))
# Compute the loss
loss = self.loss_fn(current_q_values, target_q_values.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay