-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPageCache.cpp
executable file
·340 lines (289 loc) · 7.54 KB
/
PageCache.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#include "PageCache.h"
constexpr int SIZEOF_PAGE_ID = sizeof(PageID);
// help function
// 将 PageID 类型按照每4位保存在一个uint8_t类型中,组成一个数组
// 例如 0x000000000000000F == 0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,1111 --> {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15}
static std::vector<uint8_t> PageId2Arr(const PageID id)
{
std::vector<uint8_t> ret(SIZEOF_PAGE_ID * 2, 0);
PageID mask = static_cast<PageID>(0xFF) << ((SIZEOF_PAGE_ID - 1) * 8);
for(int i=0;i<SIZEOF_PAGE_ID;++i)
{
uint8_t tempA = static_cast<uint8_t>((id & mask) >> (8 * (SIZEOF_PAGE_ID - i -1))); // 每次截取8位
uint8_t tempB = (tempA & 0xF0) >> 4; // 取 tempA 前4位
uint8_t tempC = tempA & 0x0F; // 取 tempA 后4位
ret[i*2] = tempB;
ret[i*2 + 1] = tempC;
mask >>= 8;
}
return ret;
}
PageCache PageCache::_inst;
//大对象申请,直接从系统
Span* PageCache::AllocBigPageObj(size_t size)
{
assert(size > MAX_BYTES);//只有申请64K以上内存时才需要调用此函数
size = SizeClass::_Roundup(size, PAGE_SHIFT); //对齐
size_t npage = size >> PAGE_SHIFT;
if (npage < NPAGES)
{
Span* span = NewSpan(npage);
span->_objsize = size;
span->_usecount = 1;
return span;
}
else//超过128页,向系统申请
{
#ifdef _WIN32
void* ptr = VirtualAlloc(0, npage << PAGE_SHIFT, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
void* ptr = mmap(nullptr,npage << PAGE_SHIFT,PROT_WRITE | PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS,0,0);
#endif
if (ptr == nullptr)
throw std::bad_alloc();
//Span* span = new Span;
Span* span = this->newSpan();
span->_npage = npage;
span->_pageid = (PageID)ptr >> PAGE_SHIFT;
span->_objsize = npage << PAGE_SHIFT;
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
_idspanmap[std::to_string(span->_pageid)] = span;
#else
_idspanmap[PageId2Arr(span->_pageid)] = span;
#endif
#else
_idspanmap[span->_pageid] = span;
#endif
return span;
}
}
void PageCache::FreeBigPageObj(void* ptr, Span* span)
{
size_t npage = span->_objsize >> PAGE_SHIFT;
if (npage < NPAGES) //相当于还是小于128页
{
ReleaseSpanToPageCache(span);
}
else
{
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
_idspanmap.erase(_idspanmap.find(std::to_string(npage)));
#else
_idspanmap.erase(_idspanmap.find(PageId2Arr(npage)));
#endif
#else
_idspanmap.erase(npage);
#endif
//void* ptr = (void*)(span->_pageid << PAGE_SHIFT);//是否可以这样做然后少传递一个参数
delete span;
#ifdef _WIN32
VirtualFree(ptr, 0, MEM_RELEASE);
this->_ptr_record.emplace_back(ptr);
#elif __linux__
munmap(ptr,npage << PAGE_SHIFT);
#endif
}
}
Span* PageCache::NewSpan(size_t n)
{
// 加锁,防止多个线程同时到PageCache中申请span
// 这里必须是给全局加锁,不能单独的给每个桶加锁
// 如果对应桶没有span,是需要向系统申请的
// 可能存在多个线程同时向系统申请内存的可能
std::unique_lock<std::mutex> lock(_mutex);
return _NewSpan(n);
}
Span* PageCache::_NewSpan(size_t n)
{
assert(n < NPAGES);
if (!_spanlist[n].Empty())
{
Span* span =_spanlist[n].PopFront();
span->_usecount = 1;
return span;
}
for (size_t i = n + 1; i < NPAGES; ++i)
{
if (!_spanlist[i].Empty())
{
//大内存对象拆分
Span* span = _spanlist[i].PopFront();
// Span* splist = new Span;
Span* splist = this->newSpan();
splist->_pageid = span->_pageid;
splist->_npage = n;
splist->_objsize = splist->_npage << PAGE_SHIFT;
splist->_usecount = 1;//一次使用
span->_pageid = span->_pageid + n;
span->_npage = span->_npage - n;
span->_objsize = span->_npage << PAGE_SHIFT;
for (size_t j = 0; j < n; ++j)
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
_idspanmap[std::to_string(splist->_pageid + j)] = splist;
#else
_idspanmap[PageId2Arr(splist->_pageid + j)] = splist;
#endif
#else
_idspanmap[splist->_pageid + j] = splist;
#endif
_spanlist[span->_npage].PushFront(span);
return splist;
}
}
// Span* span = new Span;
Span* span = this->newSpan();
// 到这里说明SpanList中没有合适的span,只能向系统申请128页的内存
#ifdef _WIN32
void* ptr = VirtualAlloc(0, (NPAGES - 1)*(1 << PAGE_SHIFT), MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
this->_ptr_record.push_back(ptr);
#elif __linux__
void *ptr = sbrk((NPAGES - 1)*(1 << PAGE_SHIFT));
#endif
span->_pageid = (PageID)ptr >> PAGE_SHIFT;
span->_npage = NPAGES - 1;
for (size_t i = 0; i < span->_npage; ++i)
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
_idspanmap[std::to_string(span->_pageid + i)] = span;
#else
_idspanmap[PageId2Arr(span->_pageid + i)] = span;
#endif
#else
_idspanmap[span->_pageid + i] = span;
#endif
_spanlist[span->_npage].PushFront(span); //Span->_next Span->_prev
return _NewSpan(n);
}
// 获取从对象到span的映射
Span* PageCache::MapObjectToSpan(void* obj)
{
//计算页号
PageID id = (PageID)obj >> PAGE_SHIFT;
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
auto it = _idspanmap.find(std::to_string(id));
#else
auto it = _idspanmap.find(PageId2Arr(id));
#endif
#else
auto it = _idspanmap.find(id);
#endif
if (it != _idspanmap.end())
{
return it->second;
}
else
{
assert(false);
return nullptr;
}
}
void PageCache::ReleaseSpanToPageCache(Span* cur)
{
// 必须上全局锁,可能多个线程一起从ThreadCache中归还数据
std::unique_lock<std::mutex> lock(_mutex);
cur->_objsize = 0;
cur->_usecount = 0;
// 向前合并
while (1)
{
PageID curid = cur->_pageid;
PageID previd = curid - 1;
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
auto it = _idspanmap.find(std::to_string(previd));
#else
auto it = _idspanmap.find(PageId2Arr(previd));
#endif
#else
auto it = _idspanmap.find(previd);
#endif
// 没有找到
if (it == _idspanmap.end())
break;
// 前一个span不空闲
if (it->second->_usecount != 0)
break;
Span* prev = it->second;
//超过128页则不合并
if (cur->_npage + prev->_npage > NPAGES - 1)
break;
// 先把prev从链表中移除
_spanlist[prev->_npage].Erase(prev);
// 合并
prev->_npage += cur->_npage;
//修正id->span的映射关系
for (PageID i = 0; i < cur->_npage; ++i)
{
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
_idspanmap[std::to_string(cur->_pageid + 1)] = prev;
#else
_idspanmap[PageId2Arr(cur->_pageid + i)] = prev;
#endif
#else
_idspanmap[cur->_pageid + i] = prev;
#endif
}
// delete cur;
// 继续向前合并
cur = prev;
}
//向后合并
while (1)
{
////超过128页则不合并
PageID curid = cur->_pageid;
PageID nextid = curid + cur->_npage;
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
auto it = _idspanmap.find(std::to_string(nextid));
#else
auto it = _idspanmap.find(PageId2Arr(nextid));
#endif
#else
auto it = _idspanmap.find(nextid);
#endif
if (it == _idspanmap.end())
break;
if (it->second->_usecount != 0)
break;
Span* next = it->second;
//超过128页则不合并
if (cur->_npage + next->_npage >= NPAGES - 1)
break;
_spanlist[next->_npage].Erase(next);
cur->_npage += next->_npage;
//修正id->Span的映射关系
for (PageID i = 0; i < next->_npage; ++i)
{
#ifdef USE_RADIX_TREE
#ifdef USE_STRING
_idspanmap[std::to_string(next->_pageid + i)] = cur;
#else
_idspanmap[PageId2Arr(next->_pageid + i)] = cur;
#endif
#else
_idspanmap[next->_pageid + i] = cur;
#endif
}
// delete next;
}
// 最后将合并好的span插入到span链中
_spanlist[cur->_npage].PushFront(cur);
}
//析构函数
PageCache::~PageCache()
{
#ifdef _WIN32
for(void *ptr:this->_ptr_record)
{
VirtualFree(ptr, 0, MEM_RELEASE);
}
#elif __linux__
brk(this->_origin_brk);
#endif
}