-
Notifications
You must be signed in to change notification settings - Fork 447
/
Copy pathnfc-mfclassic.c
841 lines (762 loc) · 27 KB
/
nfc-mfclassic.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*-
* Free/Libre Near Field Communication (NFC) library
*
* Libnfc historical contributors:
* Copyright (C) 2009 Roel Verdult
* Copyright (C) 2009-2013 Romuald Conty
* Copyright (C) 2010-2012 Romain Tartière
* Copyright (C) 2010-2013 Philippe Teuwen
* Copyright (C) 2012-2013 Ludovic Rousseau
* See AUTHORS file for a more comprehensive list of contributors.
* Additional contributors of this file:
* Copyright (C) 2011-2013 Adam Laurie
* Copyright (C) 2018-2019 Danielle Bruneo
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2 )Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Note that this license only applies on the examples, NFC library itself is under LGPL
*
*/
/**
* @file nfc-mfclassic.c
* @brief MIFARE Classic manipulation example
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif // HAVE_CONFIG_H
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>
#ifndef _WIN32
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#include <nfc/nfc.h>
#include "mifare.h"
#include "nfc-utils.h"
static nfc_context *context;
static nfc_device *pnd;
static nfc_target nt;
static mifare_param mp;
static mifare_classic_tag mtKeys;
static mifare_classic_tag mtDump;
static bool bUseKeyA;
static bool bUseKeyFile;
static bool bForceKeyFile;
static bool bTolerateFailures;
static bool bFormatCard;
static bool dWrite = false;
static bool unlocked = false;
static uint8_t uiBlocks;
static uint8_t keys[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5,
0x4d, 0x3a, 0x99, 0xc3, 0x51, 0xdd,
0x1a, 0x98, 0x2c, 0x7e, 0x45, 0x9a,
0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xab, 0xcd, 0xef, 0x12, 0x34, 0x56
};
static uint8_t default_key[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static uint8_t default_acl[] = {0xff, 0x07, 0x80, 0x69};
static const nfc_modulation nmMifare = {
.nmt = NMT_ISO14443A,
.nbr = NBR_106,
};
static size_t num_keys = sizeof(keys) / 6;
#define MAX_FRAME_LEN 264
static uint8_t abtRx[MAX_FRAME_LEN];
static int szRxBits;
uint8_t abtHalt[4] = { 0x50, 0x00, 0x00, 0x00 };
// special unlock command
uint8_t abtUnlock1[1] = { 0x40 };
uint8_t abtUnlock2[1] = { 0x43 };
static bool
transmit_bits(const uint8_t *pbtTx, const size_t szTxBits)
{
// Show transmitted command
printf("Sent bits: ");
print_hex_bits(pbtTx, szTxBits);
// Transmit the bit frame command, we don't use the arbitrary parity feature
if ((szRxBits = nfc_initiator_transceive_bits(pnd, pbtTx, szTxBits, NULL, abtRx, sizeof(abtRx), NULL)) < 0)
return false;
// Show received answer
printf("Received bits: ");
print_hex_bits(abtRx, szRxBits);
// Succesful transfer
return true;
}
static bool
transmit_bytes(const uint8_t *pbtTx, const size_t szTx)
{
// Show transmitted command
printf("Sent bits: ");
print_hex(pbtTx, szTx);
// Transmit the command bytes
int res;
if ((res = nfc_initiator_transceive_bytes(pnd, pbtTx, szTx, abtRx, sizeof(abtRx), 0)) < 0)
return false;
// Show received answer
printf("Received bits: ");
print_hex(abtRx, res);
// Succesful transfer
return true;
}
static void
print_success_or_failure(bool bFailure, uint32_t *uiBlockCounter)
{
printf("%c", (bFailure) ? 'x' : '.');
if (uiBlockCounter && !bFailure)
*uiBlockCounter += 1;
}
static bool
is_first_block(uint32_t uiBlock)
{
// Test if we are in the small or big sectors
if (uiBlock < 128)
return ((uiBlock) % 4 == 0);
else
return ((uiBlock) % 16 == 0);
}
static bool
is_trailer_block(uint32_t uiBlock)
{
// Test if we are in the small or big sectors
if (uiBlock < 128)
return ((uiBlock + 1) % 4 == 0);
else
return ((uiBlock + 1) % 16 == 0);
}
static uint32_t
get_trailer_block(uint32_t uiFirstBlock)
{
// Test if we are in the small or big sectors
uint32_t trailer_block = 0;
if (uiFirstBlock < 128) {
trailer_block = uiFirstBlock + (3 - (uiFirstBlock % 4));
} else {
trailer_block = uiFirstBlock + (15 - (uiFirstBlock % 16));
}
return trailer_block;
}
static bool
authenticate(uint32_t uiBlock)
{
mifare_cmd mc;
// Set the authentication information (uid)
memcpy(mp.mpa.abtAuthUid, nt.nti.nai.abtUid + nt.nti.nai.szUidLen - 4, 4);
// Should we use key A or B?
mc = (bUseKeyA) ? MC_AUTH_A : MC_AUTH_B;
// Key file authentication.
if (bUseKeyFile) {
// Locate the trailer (with the keys) used for this sector
uint32_t uiTrailerBlock;
uiTrailerBlock = get_trailer_block(uiBlock);
// Extract the right key from dump file
if (bUseKeyA)
memcpy(mp.mpa.abtKey, mtKeys.amb[uiTrailerBlock].mbt.abtKeyA, sizeof(mp.mpa.abtKey));
else
memcpy(mp.mpa.abtKey, mtKeys.amb[uiTrailerBlock].mbt.abtKeyB, sizeof(mp.mpa.abtKey));
// Try to authenticate for the current sector
if (nfc_initiator_mifare_cmd(pnd, mc, uiBlock, &mp))
return true;
// If formatting or not using key file, try to guess the right key
} else if (bFormatCard || !bUseKeyFile) {
for (size_t key_index = 0; key_index < num_keys; key_index++) {
memcpy(mp.mpa.abtKey, keys + (key_index * 6), 6);
if (nfc_initiator_mifare_cmd(pnd, mc, uiBlock, &mp)) {
if (bUseKeyA)
memcpy(mtKeys.amb[uiBlock].mbt.abtKeyA, &mp.mpa.abtKey, sizeof(mtKeys.amb[uiBlock].mbt.abtKeyA));
else
memcpy(mtKeys.amb[uiBlock].mbt.abtKeyB, &mp.mpa.abtKey, sizeof(mtKeys.amb[uiBlock].mbt.abtKeyB));
return true;
}
if (nfc_initiator_select_passive_target(pnd, nmMifare, nt.nti.nai.abtUid, nt.nti.nai.szUidLen, NULL) <= 0) {
ERR("tag was removed");
return false;
}
}
}
return false;
}
static bool
unlock_card(bool write)
{
// Configure the CRC
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return false;
}
// Use raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return false;
}
iso14443a_crc_append(abtHalt, 2);
transmit_bytes(abtHalt, 4);
// now send unlock
if (!transmit_bits(abtUnlock1, 7)) {
printf("Warning: Unlock command [1/2]: failed / not acknowledged.\n");
dWrite = true;
if (write) {
printf("Trying to rewrite block 0 on a direct write tag.\n");
}
} else {
if (transmit_bytes(abtUnlock2, 1)) {
printf("Card unlocked\n");
unlocked = true;
} else {
printf("Warning: Unlock command [2/2]: failed / not acknowledged.\n");
}
}
// reset reader
if (!unlocked) {
if (nfc_initiator_select_passive_target(pnd, nmMifare, nt.nti.nai.abtUid, nt.nti.nai.szUidLen, NULL) <= 0) {
printf("Error: tag was removed\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
return true;
}
// Configure the CRC
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
return false;
}
// Switch off raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
return false;
}
return true;
}
static int
get_rats(void)
{
int res;
uint8_t abtRats[2] = { 0xe0, 0x50};
// Use raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return -1;
}
res = nfc_initiator_transceive_bytes(pnd, abtRats, sizeof(abtRats), abtRx, sizeof(abtRx), 0);
if (res > 0) {
// ISO14443-4 card, turn RF field off/on to access ISO14443-3 again
if (nfc_device_set_property_bool(pnd, NP_ACTIVATE_FIELD, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return -1;
}
if (nfc_device_set_property_bool(pnd, NP_ACTIVATE_FIELD, true) < 0) {
nfc_perror(pnd, "nfc_configure");
return -1;
}
}
// Reselect tag
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("Error: tag disappeared\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
return res;
}
static bool
read_card(bool read_unlocked)
{
int32_t iBlock;
bool bFailure = false;
uint32_t uiReadBlocks = 0;
if (read_unlocked) {
unlock_card(false);
//If the user is attempting an unlocked read, but has a direct-write type magic card, they don't
//need to use the R mode. We'll trigger a warning and let them proceed.
if (dWrite) {
printf("Note: This card can't do an unlocked read (R) \n");
read_unlocked = 0;
}
}
printf("Reading out %d blocks |", uiBlocks + 1);
// Read the card from end to begin
for (iBlock = uiBlocks; iBlock >= 0; iBlock--) {
// Authenticate everytime we reach a trailer block
if (is_trailer_block(iBlock)) {
if (bFailure) {
// When a failure occured we need to redo the anti-collision
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("!\nError: tag was removed\n");
return false;
}
bFailure = false;
}
fflush(stdout);
// Try to authenticate for the current sector
if (!read_unlocked && !authenticate(iBlock)) {
printf("!\nError: authentication failed for block 0x%02x\n", iBlock);
return false;
}
// Try to read out the trailer
if (nfc_initiator_mifare_cmd(pnd, MC_READ, iBlock, &mp)) {
if (read_unlocked) {
memcpy(mtDump.amb[iBlock].mbd.abtData, mp.mpd.abtData, sizeof(mtDump.amb[iBlock].mbd.abtData));
} else {
// Copy the keys over from our key dump and store the retrieved access bits
memcpy(mtDump.amb[iBlock].mbt.abtKeyA, mtKeys.amb[iBlock].mbt.abtKeyA, sizeof(mtDump.amb[iBlock].mbt.abtKeyA));
memcpy(mtDump.amb[iBlock].mbt.abtAccessBits, mp.mpt.abtAccessBits, sizeof(mtDump.amb[iBlock].mbt.abtAccessBits));
memcpy(mtDump.amb[iBlock].mbt.abtKeyB, mtKeys.amb[iBlock].mbt.abtKeyB, sizeof(mtDump.amb[iBlock].mbt.abtKeyB));
}
} else {
printf("!\nfailed to read trailer block 0x%02x\n", iBlock);
bFailure = true;
}
} else {
// Make sure a earlier readout did not fail
if (!bFailure) {
// Try to read out the data block
if (nfc_initiator_mifare_cmd(pnd, MC_READ, iBlock, &mp)) {
memcpy(mtDump.amb[iBlock].mbd.abtData, mp.mpd.abtData, sizeof(mtDump.amb[iBlock].mbd.abtData));
} else {
printf("!\nError: unable to read block 0x%02x\n", iBlock);
bFailure = true;
}
}
}
// Show if the readout went well for each block
print_success_or_failure(bFailure, &uiReadBlocks);
if ((!bTolerateFailures) && bFailure)
return false;
}
printf("|\n");
printf("Done, %d of %d blocks read.\n", uiReadBlocks, uiBlocks + 1);
fflush(stdout);
return true;
}
static bool
write_card(bool write_block_zero)
{
uint32_t uiBlock;
bool bFailure = false;
uint32_t uiWriteBlocks = 0;
//Determine if we have to unlock the card
if (write_block_zero) {
unlock_card(true);
}
printf("Writing %d blocks |", uiBlocks + write_block_zero);
// Completely write the card, but skipping block 0 if we don't need to write on it
for (uiBlock = 0; uiBlock <= uiBlocks; uiBlock++) {
//Determine if we have to write block 0
if (!write_block_zero && uiBlock == 0) {
continue;
}
// Authenticate everytime we reach the first sector of a new block
if (uiBlock == 1 || is_first_block(uiBlock)) {
if (bFailure) {
// When a failure occured we need to redo the anti-collision
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("!\nError: tag was removed\n");
return false;
}
bFailure = false;
}
fflush(stdout);
// Try to authenticate for the current sector
// If we are are writing to a chinese magic card, we've already unlocked
// If we're writing to a direct write card, we need to authenticate
// If we're writing something else, we'll need to authenticate
if ((write_block_zero && dWrite) || !write_block_zero) {
if (!authenticate(uiBlock) && !bTolerateFailures) {
printf("!\nError: authentication failed for block %02x\n", uiBlock);
return false;
}
}
}
if (is_trailer_block(uiBlock)) {
if (bFormatCard) {
// Copy the default key and reset the access bits
memcpy(mp.mpt.abtKeyA, default_key, sizeof(mp.mpt.abtKeyA));
memcpy(mp.mpt.abtAccessBits, default_acl, sizeof(mp.mpt.abtAccessBits));
memcpy(mp.mpt.abtKeyB, default_key, sizeof(mp.mpt.abtKeyB));
} else {
// Copy the keys over from our key dump and store the retrieved access bits
memcpy(mp.mpt.abtKeyA, mtDump.amb[uiBlock].mbt.abtKeyA, sizeof(mp.mpt.abtKeyA));
memcpy(mp.mpt.abtAccessBits, mtDump.amb[uiBlock].mbt.abtAccessBits, sizeof(mp.mpt.abtAccessBits));
memcpy(mp.mpt.abtKeyB, mtDump.amb[uiBlock].mbt.abtKeyB, sizeof(mp.mpt.abtKeyB));
}
// Try to write the trailer
if (nfc_initiator_mifare_cmd(pnd, MC_WRITE, uiBlock, &mp) == false) {
printf("failed to write trailer block %d \n", uiBlock);
bFailure = true;
}
} else {
// Make sure a earlier write did not fail
if (!bFailure) {
// Try to write the data block
if (bFormatCard && uiBlock)
memset(mp.mpd.abtData, 0x00, sizeof(mp.mpd.abtData));
else
memcpy(mp.mpd.abtData, mtDump.amb[uiBlock].mbd.abtData, sizeof(mp.mpd.abtData));
// do not write a block 0 with incorrect BCC - card will be made invalid!
if (uiBlock == 0) {
if ((mp.mpd.abtData[0] ^ mp.mpd.abtData[1] ^ mp.mpd.abtData[2] ^ mp.mpd.abtData[3] ^ mp.mpd.abtData[4]) != 0x00) {
printf("!\nError: incorrect BCC in MFD file!\n");
printf("Expecting BCC=%02X\n", mp.mpd.abtData[0] ^ mp.mpd.abtData[1] ^ mp.mpd.abtData[2] ^ mp.mpd.abtData[3]);
return false;
}
}
if (!nfc_initiator_mifare_cmd(pnd, MC_WRITE, uiBlock, &mp)) {
bFailure = true;
printf("Failure to write to data block %i\n", uiBlock);
}
if (uiBlock == 0 && dWrite) {
if (nfc_initiator_init(pnd) < 0) {
nfc_perror(pnd, "nfc_initiator_init");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
};
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("!\nError: tag was removed\n");
return false;
}
}
} else {
printf("Failure during write process.\n");
}
}
//}
// Show if the write went well for each block
print_success_or_failure(bFailure, &uiWriteBlocks);
if ((! bTolerateFailures) && bFailure)
return false;
}
printf("|\n");
printf("Done, %d of %d blocks written.\n", uiWriteBlocks, uiBlocks + 1);
fflush(stdout);
return true;
}
typedef enum {
ACTION_READ,
ACTION_WRITE,
ACTION_USAGE
} action_t;
static void
print_usage(const char *pcProgramName)
{
printf("Usage: ");
#ifndef _WIN32
printf("%s f|r|R|w|W a|b u|U<01ab23cd> <dump.mfd> [<keys.mfd> [f] [v]]\n", pcProgramName);
#else
printf("%s f|r|R|w|W a|b u|U<01ab23cd> <dump.mfd> [<keys.mfd> [f]]\n", pcProgramName);
#endif
printf(" f|r|R|w|W - Perform format (f) or read from (r) or unlocked read from (R) or write to (w) or block 0 write to (W) card\n");
printf(" *** format will reset all keys to FFFFFFFFFFFF and all data to 00 and all ACLs to default\n");
printf(" *** unlocked read does not require authentication and will reveal A and B keys\n");
printf(" *** note that block 0 write will attempt to overwrite block 0 including UID\n");
printf(" *** block 0 write only works with special Mifare cards (Chinese clones)\n");
printf(" a|A|b|B - Use A or B keys for action; Halt on errors (a|b) or tolerate errors (A|B)\n");
printf(" u|U - Use any (u) uid or supply a uid specifically as U01ab23cd.\n");
printf(" <dump.mfd> - MiFare Dump (MFD) used to write (card to MFD) or (MFD to card)\n");
printf(" <keys.mfd> - MiFare Dump (MFD) that contain the keys (optional)\n");
printf(" f - Force using the keyfile even if UID does not match (optional)\n");
#ifndef _WIN32
printf(" v - Sends libnfc log output to console (optional)\n");
#endif
printf("Examples: \n\n");
printf(" Read card to file, using key A:\n\n");
printf(" %s r a u mycard.mfd\n\n", pcProgramName);
printf(" Write file to blank card, using key A:\n\n");
printf(" %s w a u mycard.mfd\n\n", pcProgramName);
printf(" Write new data and/or keys to previously written card, using key A:\n\n");
printf(" %s w a u newdata.mfd mycard.mfd\n\n", pcProgramName);
printf(" Format/wipe card (note two passes required to ensure writes for all ACL cases):\n\n");
printf(" %s f A u dummy.mfd keyfile.mfd f\n", pcProgramName);
printf(" %s f B u dummy.mfd keyfile.mfd f\n\n", pcProgramName);
printf(" Read card to file, using key A and uid 0x01 0xab 0x23 0xcd:\n\n");
printf(" %s r a U01ab23cd mycard.mfd\n\n", pcProgramName);
}
int
main(int argc, const char *argv[])
{
action_t atAction = ACTION_USAGE;
uint8_t *pbtUID;
uint8_t _tag_uid[4];
uint8_t *tag_uid = _tag_uid;
bool unlock = false;
if (argc < 2) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
const char *command = argv[1];
if (argc < 5) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (strcmp(command, "r") == 0 || strcmp(command, "R") == 0) {
atAction = ACTION_READ;
if (strcmp(command, "R") == 0)
unlock = true;
bUseKeyA = tolower((int)((unsigned char) * (argv[2]))) == 'a';
bTolerateFailures = tolower((int)((unsigned char) * (argv[2]))) != (int)((unsigned char) * (argv[2]));
bUseKeyFile = (argc > 5) && strcmp(argv[5], "v");
bForceKeyFile = ((argc > 6) && (strcmp((char *)argv[6], "f") == 0));
} else if (strcmp(command, "w") == 0 || strcmp(command, "W") == 0 || strcmp(command, "f") == 0) {
atAction = ACTION_WRITE;
if (strcmp(command, "W") == 0)
unlock = true;
bFormatCard = (strcmp(command, "f") == 0);
bUseKeyA = tolower((int)((unsigned char) * (argv[2]))) == 'a';
bTolerateFailures = tolower((int)((unsigned char) * (argv[2]))) != (int)((unsigned char) * (argv[2]));
bUseKeyFile = (argc > 5) && strcmp(argv[5], "v");
bForceKeyFile = ((argc > 6) && (strcmp((char *)argv[6], "f") == 0));
}
if (argv[3][0] == 'U') {
unsigned long int _uid;
if (strlen(argv[3]) != 9) {
printf("Error, illegal tag specification, use U01ab23cd for example.\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
_uid = strtoul(argv[3] + 1, NULL, 16);
tag_uid[0] = (_uid & 0xff000000UL) >> 24;
tag_uid[1] = (_uid & 0x00ff0000UL) >> 16;
tag_uid[2] = (_uid & 0x0000ff00UL) >> 8;
tag_uid[3] = (_uid & 0x000000ffUL);
printf("Attempting to use specific UID: 0x%2x 0x%2x 0x%2x 0x%2x\n",
tag_uid[0], tag_uid[1], tag_uid[2], tag_uid[3]);
} else {
tag_uid = NULL;
}
#ifndef _WIN32
// Send noise from lib to /dev/null
bool verbose = false;
if (argv[7]) {
if (strcmp(argv[7], "v") == 0) verbose = true;
} else {
if ((strcmp(argv[6], "v")) || (strcmp(argv[5], "v")) == 0) verbose = true;
}
if (!verbose) {
int fd = open("/dev/null", O_WRONLY);
dup2(fd, 2);
close(fd);
}
#endif
if (atAction == ACTION_USAGE) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
// We don't know yet the card size so let's read only the UID from the keyfile for the moment
if (bUseKeyFile) {
FILE *pfKeys = fopen(argv[5], "rb");
if (pfKeys == NULL) {
printf("Could not open keys file: %s\n", argv[5]);
exit(EXIT_FAILURE);
}
if (fread(&mtKeys, 1, 4, pfKeys) != 4) {
printf("Could not read UID from key file: %s\n", argv[5]);
fclose(pfKeys);
exit(EXIT_FAILURE);
}
fclose(pfKeys);
}
nfc_init(&context);
if (context == NULL) {
ERR("Unable to init libnfc (malloc)");
exit(EXIT_FAILURE);
}
// Try to open the NFC reader
pnd = nfc_open(context, NULL);
if (pnd == NULL) {
ERR("Error opening NFC reader");
nfc_exit(context);
exit(EXIT_FAILURE);
}
if (nfc_initiator_init(pnd) < 0) {
nfc_perror(pnd, "nfc_initiator_init");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
};
// Drop the field for a while, so can be reset
if (nfc_device_set_property_bool(pnd, NP_ACTIVATE_FIELD, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool activate field");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Let the reader only try once to find a tag
if (nfc_device_set_property_bool(pnd, NP_INFINITE_SELECT, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Disable ISO14443-4 switching in order to read devices that emulate Mifare Classic with ISO14443-4 compliance.
if (nfc_device_set_property_bool(pnd, NP_AUTO_ISO14443_4, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Configure the CRC and Parity settings
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool crc");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
if (nfc_device_set_property_bool(pnd, NP_HANDLE_PARITY, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool parity");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
printf("NFC reader: %s opened\n", nfc_device_get_name(pnd));
// Try to find a MIFARE Classic tag
int tags;
tags = nfc_initiator_select_passive_target(pnd, nmMifare, tag_uid, tag_uid == NULL ? 0 : 4, &nt);
if (tags <= 0) {
printf("Error: no tag was found\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Test if we are dealing with a MIFARE compatible tag
if (((nt.nti.nai.btSak & 0x08) == 0) && (nt.nti.nai.btSak != 0x01)) {
// if ((nt.nti.nai.btSak & 0x08) == 0) {
printf("Warning: tag is probably not a MFC!\n");
}
// Get the info from the current tag
pbtUID = nt.nti.nai.abtUid;
if (bUseKeyFile) {
uint8_t fileUid[4];
memcpy(fileUid, mtKeys.amb[0].mbm.abtUID, 4);
// Compare if key dump UID is the same as the current tag UID, at least for the first 4 bytes
if (memcmp(pbtUID, fileUid, 4) != 0) {
printf("Expected MIFARE Classic card with UID starting as: %02x%02x%02x%02x\n",
fileUid[0], fileUid[1], fileUid[2], fileUid[3]);
printf("Got card with UID starting as: %02x%02x%02x%02x\n",
pbtUID[0], pbtUID[1], pbtUID[2], pbtUID[3]);
if (!bForceKeyFile) {
printf("Aborting!\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
}
}
printf("Found MIFARE Classic card:\n");
print_nfc_target(&nt, false);
// Guessing size
if ((nt.nti.nai.abtAtqa[1] & 0x02) == 0x02 || nt.nti.nai.btSak == 0x18)
// 4K
uiBlocks = 0xff;
else if (nt.nti.nai.btSak == 0x09)
// 320b
uiBlocks = 0x13;
else
// 1K/2K, checked through RATS
uiBlocks = 0x3f;
// Testing RATS
int res;
if ((res = get_rats()) > 0) {
printf("RATS support: yes\n");
if ((res >= 10) && (abtRx[5] == 0xc1) && (abtRx[6] == 0x05)
&& (abtRx[7] == 0x2f) && (abtRx[8] == 0x2f)
&& ((nt.nti.nai.abtAtqa[1] & 0x02) == 0x00)) {
// MIFARE Plus 2K
uiBlocks = 0x7f;
}
} else
printf("RATS support: no\n");
printf("Guessing size: seems to be a %lu-byte card\n", (unsigned long)((uiBlocks + 1) * sizeof(mifare_classic_block)));
if (bUseKeyFile) {
FILE *pfKeys = fopen(argv[5], "rb");
if (pfKeys == NULL) {
printf("Could not open keys file: %s\n", argv[5]);
exit(EXIT_FAILURE);
}
if (fread(&mtKeys, 1, (uiBlocks + 1) * sizeof(mifare_classic_block), pfKeys) != (uiBlocks + 1) * sizeof(mifare_classic_block)) {
printf("Could not read keys file: %s\n", argv[5]);
fclose(pfKeys);
exit(EXIT_FAILURE);
}
fclose(pfKeys);
}
if (atAction == ACTION_READ) {
memset(&mtDump, 0x00, sizeof(mtDump));
} else {
FILE *pfDump = fopen(argv[4], "rb");
if (pfDump == NULL) {
printf("Could not open dump file: %s\n", argv[4]);
exit(EXIT_FAILURE);
}
if (fread(&mtDump, 1, (uiBlocks + 1) * sizeof(mifare_classic_block), pfDump) != (uiBlocks + 1) * sizeof(mifare_classic_block)) {
printf("Could not read dump file: %s\n", argv[4]);
fclose(pfDump);
exit(EXIT_FAILURE);
}
fclose(pfDump);
}
// printf("Successfully opened required files\n");
if (atAction == ACTION_READ) {
if (read_card(unlock)) {
printf("Writing data to file: %s ...", argv[4]);
fflush(stdout);
FILE *pfDump = fopen(argv[4], "wb");
if (pfDump == NULL) {
printf("Could not open dump file: %s\n", argv[4]);
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
if (fwrite(&mtDump, 1, (uiBlocks + 1) * sizeof(mifare_classic_block), pfDump) != ((uiBlocks + 1) * sizeof(mifare_classic_block))) {
printf("\nCould not write to file: %s\n", argv[4]);
fclose(pfDump);
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
printf("Done.\n");
fclose(pfDump);
} else {
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
} else if (atAction == ACTION_WRITE) {
if (!write_card(unlock)) {
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
}
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_SUCCESS);
}