-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculateDivergence2.m
executable file
·64 lines (50 loc) · 2.12 KB
/
calculateDivergence2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Tdiv = cell(length(PN),1);
Mdiv = cell(length(PN),1);
Sdiv = cell(length(PN),1);
for t = timePts
t
bCells = vertcat(tStruct(t).Bdat.cells);
bCells = sort(bCells,2);
Tdiv{t} = zeros(size(PN{t}));
Mdiv{t} = zeros(size(PN{t}));
Sdiv{t} = zeros(size(PN{t}));
for ii = 1:size(yG{t},2)
for jj = 1:size(xG{t},2)
if (ERes{t}(ii,jj) < 10)
[ ~, ~, ~, bulkVerts ] = fitDual.returnSubGraph( tStruct(t), xG{t}(:,jj), yG{t}(:,ii) );
[ extVerts ] = fitDual.returnExtVerts( tStruct(t), bulkVerts );
[ r0 ] = generate.embedSubGraph( tStruct(t), bulkVerts, extVerts, tStruct(t).embed );
rEst = PN{t}{ii,jj}.computePrimalVerts();
dV = PN{t}{ii,jj}.d1;
dV = sparse(dV);
rB = dV'*rEst;
rB = bsxfun(@rdivide,rB,sqrt(sum(rB.^2,2)));
Tvec = PN{t}{ii,jj}.d0*PN{t}{ii,jj}.q;
Tvec = Tvec * [0,-1;1,0];
Tvec = scale{t}(ii,jj)*Tvec;
bInd = pressure.matchBonds(PN{t}{ii,jj},bCells);
M = zeros(size(bInd));
M(bInd>0) = [tStruct(t).Bdat(bInd(bInd>0)).myo];
S = zeros(size(bInd));
S(bInd>0) = [tStruct(t).Bdat(bInd(bInd>0)).stress];
Mvec = bsxfun(@times,M',rB);
Svec = bsxfun(@times,S',rB);
Tnet = dV*Tvec;
Mnet = dV*Mvec;
Snet = dV*Svec;
% clf
% quiver(rEst(:,1),rEst(:,2),Mnet(:,1),Mnet(:,2))
% hold on
% quiver(rEst(:,1),rEst(:,2),Snet(:,1),Snet(:,2))
% pause
%
TMag = sqrt(sum(Tnet.^2,2));
MMag = sqrt(sum(Mnet.^2,2));
SMag = sqrt(sum(Snet.^2,2));
Tdiv{t}(ii,jj) = nanmedian(TMag);
Mdiv{t}(ii,jj) = nanmean(MMag);
Sdiv{t}(ii,jj) = nanmedian(SMag);
end
end
end
end