-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathModels.py
65 lines (57 loc) · 2.35 KB
/
Models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 8 20:28:07 2019
@author: Or
"""
import torch
import torch.nn.functional as F
class ConvNet(torch.nn.Module):
def __init__(self,H,W,C,Dout):
super(ConvNet, self).__init__()
self.H = H
self.W = W
self.C = C
self.Dout = Dout
self.Chid = 32
self.Chid2 = 64
self.Chid3 = 64
self.conv1 = torch.nn.Conv2d(in_channels=self.C,out_channels=self.Chid,kernel_size=3,stride=1,padding=1)
self.conv2 = torch.nn.Conv2d(in_channels=self.Chid,out_channels=self.Chid2,kernel_size=3,stride=1,padding=1)
self.conv3 = torch.nn.Conv2d(in_channels=self.Chid2,out_channels=self.Chid3,kernel_size=3,stride=1,padding=1)
self.fc1 = torch.nn.Linear(int(self.Chid3*H*W/16),564)
self.fc2 = torch.nn.Linear(564,Dout)
def forward(self,x):
batch_size = x.shape[0]
x = F.max_pool2d(F.relu(self.conv1(x)),2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(F.relu(self.conv3(x)),2)
x = x.view(batch_size,int(self.Chid3*self.H*self.W/16))
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class ConvNet2(torch.nn.Module):
def __init__(self,H,W,C,Dout):
super(ConvNet2, self).__init__()
self.H = H
self.W = W
self.C = C
self.Dout = Dout
self.Chid = 32
self.Chid2 = 64
self.Chid3 = 64
self.conv1 = torch.nn.Conv2d(in_channels=self.C,out_channels=self.Chid,kernel_size=3,stride=1,padding=1)
self.conv2 = torch.nn.Conv2d(in_channels=self.Chid,out_channels=self.Chid2,kernel_size=3,stride=1,padding=1)
self.conv3 = torch.nn.Conv2d(in_channels=self.Chid2,out_channels=self.Chid3,kernel_size=3,stride=1,padding=1)
self.fc1 = torch.nn.Linear(int(self.Chid3*H*W/16),564)
self.policy = torch.nn.Linear(564,Dout)
self.value = torch.nn.Linear(564,1)
def forward(self,x):
batch_size = x.shape[0]
x = F.max_pool2d(F.relu(self.conv1(x)),2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(F.relu(self.conv3(x)),2)
x = x.view(batch_size,int(self.Chid3*self.H*self.W/16))
x = F.relu(self.fc1(x))
pi = self.policy(x)
val = self.value(x)
return pi,val