-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlegs.html
1232 lines (1055 loc) · 75.2 KB
/
legs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Legged Robotics</title>
<!--Scripts required to use the dynamic nav-bar and bootstrap-->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-TX8t27EcRE3e/ihU7zmQxVncDAy5uIKz4rEkgIXeMed4M0jlfIDPvg6uqKI2xXr2" crossorigin="anonymous">
<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js" integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js" integrity="sha384-ho+j7jyWK8fNQe+A12Hb8AhRq26LrZ/JpcUGGOn+Y7RsweNrtN/tE3MoK7ZeZDyx" crossorigin="anonymous"></script>
<link href="legs/style.css" rel="stylesheet" type="text/css">
<!--Scripts required to use the dynamic nav-bar and bootstrap-->
</head>
<!--This is for the navbar via bootstrap-->
<body>
<h1 class="display-1 text-center"> Legged Robotics</h1>
<nav class="navbar navbar-expand-lg navbar-dark bg-primary fixed-top sticky-top">
<a class="navbar-brand" href="#"></a>
<img src="https://asianroboticsreview.com/wp-content/uploads/2019/01/walkerInsert.png" width="30" height="30" class="d-inline-block align-top" alt="Picture of a walker">
<a class="navbar-brand" href="#"> Top/About</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNavDropdown" aria-controls="navbarNavDropdown" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarNavDropdown">
<ul class="navbar-nav">
<!-- Modules start !-->
<li class="nav-item dropdown active">
<a class="nav-link dropdown-toggle" href="#" id="navbarDropdownMenuLink" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
Modules
</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdownMenuLink">
<a class="dropdown-item" href="#mod1"><b>Module 1: </b> 2D Passive hopper (MATLAB)</a>
<a class="dropdown-item" href="#mod2"><b>Module 2: </b> 2D Hopper control using foot placement (Raibert control) (MATLAB) </a>
<a class="dropdown-item" href="#mod3"><b>Module 3: </b> 2D Passive walker (MATLAB)</a>
<a class="dropdown-item" href="#mod4"><b>Module 4: </b> 2D Walker Controlled by Partial Feedback Linearization (MATLAB) </a>
<a class="dropdown-item" href="#mod5"><b>Module 5: </b> 3D Biped walking (MATLAB) </a>
<a class="dropdown-item" href="#mod6"><b>Module 6: </b> 2D Rimless wheel modeling (CoppeliaSim) </a>
<a class="dropdown-item" href="#mod7"><b>Module 7: </b> 2D Passive dynamic walker (CoppeliaSim) </a>
</div>
</li>
<!-- Modules end !-->
<!-- Download/Links start !-->
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" href="#" id="navbarDropdownMenuLink1" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
Downloads/Links
</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdownMenuLink">
<a class="dropdown-item" href="https://www.youtube.com/watch?v=g9O2MNDZTmY&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=4"><b>Syllabus:</b> YouTube video</a>
<a class="dropdown-item" href="legs/notes.zip"><b> All notes</b> zipped</a>
<a class="dropdown-item" href="legs/code.zip"><b> All code</b> zipped</a>
<a class="dropdown-item" href="https://www.youtube.com/playlist?list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5"><b> All Videos: </b> YouTube playlist</a>
<a class="dropdown-item" href="legs/notes/MATLAB-Basics.pdf"><b> MATLAB Intro 1: </b>Basics of MATLAB</a>
<a class="dropdown-item" href="legs/notes/MATLAB-Scripts.pdf"><b>MATLAB Intro 2: </b> MATLAB Scripts</a>
<a class="dropdown-item" href="legs/notes/MATLAB-Animations.pdf"><b>MATLAB Intro 3: </b>MATLAB Animations</a>
</div>
</li>
<!-- Download/Links end !-->
<!-- All Material !-->
<li class="nav-item active">
<a class="nav-link" href="#FullTable">All Material<span class="sr-only">(current)</span></a>
</li>
<!-- All Material end !-->
<!-- other course !-->
<li class="nav-item dropdown active">
<a class="nav-link dropdown-toggle" href="#" id="NavbarDropdownMenuLink2" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">All courses</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdownMenuLink">
<a class="dropdown-item" href="http://tiny.cc/legged"><b>Legged Robotics</b></a>
<a class="dropdown-item" href="http://tiny.cc/robotics"><b>Robotics MATLAB</b></a>
<a class="dropdown-item" href="http://tiny.cc/roboticspy"><b>Robotics Python</b></a>
<a class="dropdown-item" href="http://tiny.cc/mujoco"><b>MuJoCo C</b></a>
<a class="dropdown-item" href="http://tiny.cc/mujocopy"><b>MuJoCo Python</b></a>
<a class="dropdown-item" href="http://tiny.cc/mechatronix"><b>Mechatronics</b></a>
</div>
</li>
<!-- other course ends !-->
<!-- All Material end !-->
<li class="nav-item active">
<a class="nav-link" href="https://pab47.github.io">Pranav Bhounsule (homepage)</a>
</li>
<!-- All Material end !-->
</ul>
</div>
</nav>
<!--The header/comments of the page, You need to update this-->
<div id ="header" align="left" class="col-xl-12"
<p> <br>
A first course in legged robotics. The course is organized in a few ways. <br>
<ol>
<li>
The <b>“Modules”</b> tab divides the course material into a broader outcome (e.g., passive dynamic walker, hopper control) and suggests topics to cover to learn the outcome. We recommend this approach to the beginner.
</li>
<li>
The <b>“Download/Links”</b> tab can be used to download all material offline and provides links to external YouTube videos.
</li>
<li>
The <b>“All Materials”</b> tab provides all lectures material as they were taught. This is ideal if the beginner wants a semester long learning experience.
</li>
</ol>
<b>About:</b> The course emphasizes learning through extensive numerical simulations and animations. Mathematical modeling and theory is explained to build the necessary intuition to develop numeric code. MATLAB code provides examples on how to program the physics, develop controllers, and animate the system (see Downloads/Links: MATLAB links for tutorials). <a href="https://www.coppeliarobotics.com/">CoppeliaSim</a> (free simulator for education) is used for modeling and control code is written in Lua. MATLAB 2021 with symbolic and optimization toolbox and CoppeliaSim v4.1.0 (July 21, 2020) were used.
</div>
<!--This is for the navbar link to work and go to that module-->
<div id="mod1">
<br><br>
</div>
<div class="col-xl-12" id="main">
<h2 align="center"><strong>Module 1</strong>: 2D Passive hopper (MATLAB)</h2>
<div align="center">
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="1" align="center"><b>3. Dynamics using Euler-Lagrange Equations </b> </td>
<td align="center"> <a href = "https://www.youtube.com/watch?v=XcTsx85kjV8"><strong>3a</strong>. Dynamics using Euler-Lagrange Equations</a></td>
<td rowspan="1" align="center"> <a href="legs/notes/Lec3_dynamics_euler_lagrange.pdf">Dynamics of Euler-Lagrange PDF</a></td>
<td rowspan="1" align="center"> <a href="legs/code/lec3_euler_lagrange.zip">Lec Code 3</a></td>
<td rowspan="1"> <ul>
<li>Algorithm for solving for equations of motion using Euler-Lagrange equations.</li>
<li>This is illustrated using a simple projectile with drag</li>
</ul>
</td>
</tr>
<tr>
<td rowspan="2" align="center"><b>7. Intro. to Hybrid Systems </b></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=empN1pMBxkk">Hybrid Systems Bouncing Ball Example</a></td>
<td align="center"><a href="legs/notes/Lec7a_hybrid_intro.pdf">Hybrid Intro PDF</a></td>
<td rowspan="2" align="center"><a href="legs/code/lec7a_ball_bounce.zip">Lec 7 Code</a></td>
<td rowspan="2" align="center"> <ul>
<li>Illustrate a hybrid system, a bouncing ball. We develop basic framework for simulating the system by coding one bounce and then repeated calls to one bounce</li>
<li>Introduction to passive dynamic walker as a hybrid system. Terminology of hybrid systems such as Poincare map, fixed point, linearized stability of the fixed point, and a simple analytical example. </li>
</ul>
</td>
</tr>
<tr>
<td align="center"><a href="https://www.youtube.com/watch?v=YrnhthxnVVU&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=16">Hybrid Systems Termonology</a></td>
<td align="center"><a href="legs/notes/Lec7b_hybrid_terminology.pdf">Hybrid Terminology PDF</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>12. Hopping model: Spring Loaded Inverted Pendulum</b></td>
<td align="center"><a href="https://www.youtube.com/watch?v=qI_94iU1S0c&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=23">Spring load inverted pendulum model</a></td>
<td align="center"><a href="legs/notes/Lec12_Hopping_Model.pdf">Hopping Model PDF</a></td>
<td align="center"> <a href="legs/code/Lec12_Spring_Loaded_Inverted_Pendulum.zip">Lec 12 Code</a></td>
<td>
<ul>
<li>Using Euler-Lagrange equations to derive the equations of motion.</li>
<li>Details on simulation and animation.</li>
<li>Generating steady state gaits and analyzing linear stability (see terminolgy for hybrid systems)</li>
</ul>
</td>
</tr>
</table> </div>
<div id="mod2">
<br><br>
</div>
<br>
<div>
<h2 align="center"><strong>Module 2</strong>: 2D Hopper control using foot placement (Raibert Control)</h2>
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>3. </b><strong>Dynamics using Euler-Lagrange Equations </strong><strong></strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=rn5bZ8AHl6s&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=5"><strong>3a.</strong> Dynamics using Euler-Lagrange equations video</a></td>
<td align="center"> <a href="legs/notes/Lec1_fwd_kinematics.pdf">Dynamics of Euler-Lagrange PDF</a></td>
<td align="center"> <a href="legs/code/lec3_euler_lagrange.zip" >Lec Code 3</a></td>
<td><ul>
<li>Algorithm for solving for equations of motion using Euler-Lagrange equations.</li>
<li> This is illustrated on a simple projectitle with drag.</li>
</ul>
</td>
</tr>
<tr>
<td align="center"><b>14. </b><strong>Foot Placment Contro</strong>l</td>
<td align="center"><a href="https://www.youtube.com/watch?v=7eWLyo2a5UE&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=25"><strong>14a.</strong> Foot Placement Control for Hopper</a></td>
<td align="center"><a href="legs/notes/Lec14a_FootPlacement_Hopper.pdf">Hopper Foot Control PDF</a></td>
<td align="center"> <a href="legs/code/Lec14a_raibert_controller_for_hopper.zip">Lec 14a Code</a></td>
<td> <ul>
<li>Foot placement control of hopper using Raibert’s control</li>
<li>This section derives a simple control law using some intuition.</li>
<li>MATLAB code shows how the controller works.</li>
</ul>
</td>
</tr>
</table> </div>
<div id="mod3">
<br><br>
</div>
<br>
<div>
<h2 align="center"><strong>Module 3: </strong>Passive dynamic walker (MATLAB) </h2>
</div>
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>1. </b> <strong> Foward Kinematics</strong></td>
<td> <a href="https://www.youtube.com/watch?v=rn5bZ8AHl6s&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=5">Forward Kinematics Video </a></td>
<td align="center"> <a href="legs/notes/Lec1_fwd_kinematics.pdf"> Forward Kinemetics PDF</a></td>
<td align="center"> <a href="legs/code/lec1_forwardkinematics.zip" >Lec Code 1</a></td>
<td><ul><li>Representing the kinematics using homogenous rotaions and translations</li>
<li>Forward kinematics gives the end-effector position for the given joint angles</li>
<li>llustrated using a two-link planar manipulator.</li>
</ul>
</td>
</tr>
<tr>
<td rowspan="3" align="center"><b>3. Dynamics using Euler-Lagrange equations </b> </td>
<td align="center"> <a href = "https://www.youtube.com/watch?v=XcTsx85kjV8"><strong>3a.</strong> Dynamics using Euler-Lagrange Equations</a></td>
<td rowspan="3" align="center"> <a href="legs/notes/Lec3_dynamics_euler_lagrange.pdf">Dynamics of Euler-Lagrange PDF</a></td>
<td rowspan="3" align="center"> <a href="legs/code/lec3_euler_lagrange.zip">Lec Code 3</a></td>
<td rowspan="3"> <ul>
<li>Algorithm for solving for equations of motion using Euler-Lagrange equations. This is illistrated on a simple projectile withdrag</li>
<li>Basics of differentiation and chain rule. Writing symbolic code to derive the equations of motion.</li>
<li>Demonstrate how to derive equations of motion of a planar double pendulum</li>
</ul>
</td>
</tr>
<tr align="center">
<td> <a href="https://www.youtube.com/watch?v=TmYCPXQLDZU"><strong>3b.</strong> Deriving Equations of Motion</a></td>
</tr>
<tr align="center">
<td> <a href="https://www.youtube.com/watch?v=nIxBa8WmdOI"><strong>3c.</strong> Double Pendulum Simulation</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="2" align="center"><b>7. Intro. to Hybrid Systems </b></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=empN1pMBxkk">Hybrid Systems Bouncing Ball Example</a></td>
<td align="center"><a href="legs/notes/Lec7a_hybrid_intro.pdf">Hybrid Intro PDF</a></td>
<td rowspan="2" align="center"><a href="legs/code/lec7a_ball_bounce.zip">Lec 7 Code</a></td>
<td rowspan="2" align="center"> <ul>
<li>Illustrate a hybrid system, a bouncing ball. We develop basic framework for simulating the system by coding one bounce and then repeated calls to one bounce</li>
<li>Introduction to passive dynamic walker as a hybrid system. Terminology of hybrid systems such as Poincare map, fixed point, linearized stability of the fixed point, and a simple analytical example. </li>
</ul>
</td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><a href="https://www.youtube.com/watch?v=YrnhthxnVVU&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=16">Hybrid Systems Termonology</a></td>
<td align="center"><a href="legs/notes/Lec7b_hybrid_terminology.pdf">Hybrid Terminology PDF</a></td>
</tr>
<tr>
<td rowspan="3" align="center"><strong>8. </strong><strong>Passive Dynamic Walkers</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=rCfF-hsvCG8&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=17"><strong>8a.</strong> Passive Dynamic Walker (Pt1)</a></td>
<td align="center"><a href="legs/notes/Lec8a_passivewalker_part1.pdf">Passive Dynamic Walker PDF 1</a></td>
<td align="center" rowspan="3"><a href="legs/code/lec8_passivewalker.zip">Lec 8 Code</a></td>
<td rowspan="3"><ul>
<li>(Pt1- derivation) Intuition behind writing the equations of motion. Use of Euler-Lagrage equations to derive the equation for stance phase.</li>
<li>(Pt2 - derivation) Use of Euler-Lagrage equations to derive the equations for heelstrike. Some intuition about how to simulate the system</li>
<li>(Pt3- coding) Live coding of the equations to generate steady state gaits and analyze their linearized stability (see Terminology for hybrid systems)</li>
</ul></td>
</tr>
<tr>
<td align="center"><a href="https://www.youtube.com/watch?v=3hnDr_zOWV4&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=18"><strong>8b. </strong> Passive Dynamic Walker (Pt2)</a></td>
<td rowspan="2" align="center"> <a href="legs/notes/Lec8b_passivewalker_part2.pdf">Passive Dynamic Walker PDF 2</a></td>
</tr>
<tr>
<td align="center"><a href="https://www.youtube.com/watch?v=3hnDr_zOWV4"><strong> 8c.</strong> Passive Dynamic Walker (Pt3) Coding</a></td>
</tr>
</table>
<div id="mod4">
<br><br>
</div>
<br>
<div>
<h2 align="center"><strong>Module 4: </strong> 2D Walker controlled using partial feedback linearization</h2>
</div>
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>1. </b> <strong> Foward Kinematics</strong></td>
<td> <a href="https://www.youtube.com/watch?v=rn5bZ8AHl6s&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=5">Forward Kinematics Video </a></td>
<td align="center"> <a href="legs/notes/Lec1_fwd_kinematics.pdf"> Forward Kinemetics PDF</a></td>
<td align="center"> <a href="legs/code/lec1_forwardkinematics.zip" >Lec Code 1</a></td>
<td><ul><li>Representing the kinematics using homogenous rotaions and translations</li>
<li>Forward kinematics gives the end-effector position for the given joint angles</li>
<li>llustrated using a two-link planar manipulator.</li>
</ul> </td>
</tr>
<tr>
<td rowspan="3" align="center"><b>3. Dynamics using Euler-Lagrange Equations </b> </td>
<td align="center"> <a href = "https://www.youtube.com/watch?v=XcTsx85kjV8"><strong>3a.</strong> Dynamics using Euler-Lagrange Equations</a></td>
<td rowspan="3" align="center"> <a href="legs/notes/Lec3_dynamics_euler_lagrange.pdf">Dynamics of Euler-Lagrange PDF</a></td>
<td rowspan="3" align="center"> <a href="legs/code/lec3_euler_lagrange.zip">Lec Code 3</a></td>
<td rowspan="3"> <ul>
<li>Algorithm for solving for equations of motion using Euler-Lagrange equations. This is illistrated on a simple projectile withdrag</li>
<li>Basics of differentiation and chain rule. Writing symbolic code to derive the equations of motion.</li>
<li>Demonstrate how to derive equations of motion of a planar double pendulum</li>
</ul></td>
</tr>
<tr align="center">
<td> <a href="https://www.youtube.com/watch?v=TmYCPXQLDZU"><strong>3b.</strong> Deriving Equations of Motion</a></td>
</tr>
<tr align="center">
<td> <a href="https://www.youtube.com/watch?v=nIxBa8WmdOI"><strong>3c.</strong> Double Pendulum Simulation</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><strong>6.</strong> <strong>Jacobian Applications </strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=RdIXGO9aBnc&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=13">Jacobian and its Applications</a></td>
<td align="center"> <a href="legs/notes/Lec6a_Jacobian.pdf">Jacobian PDF</a></td>
<td align="center"><a href="legs/code/lec6a_example_jacobian.zip">Lec 6 Code</a></td>
<td><ul>
<p align="center">Basics of Jacobian. We show how to compute the Jacobian using symbolic computations and finite differences. We present two applications of Jacobian</p>
<li>Find the velocity of points of interest and illustrated on planar double pendulum</li>
<li>Find the static forces on a double pendulum.</li>
</ul>
</td>
</tr>
<tr>
<td rowspan="2" align="center"><b>7. Intro. to Hybrid Systems </b></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=empN1pMBxkk">Hybrid Systems Bouncing Ball Example</a></td>
<td align="center"><a href="legs/notes/Lec7a_hybrid_intro.pdf">Hybrid Intro PDF</a></td>
<td rowspan="2" align="center"><a href="legs/code/lec7a_ball_bounce.zip">Lec 7 Code</a></td>
<td rowspan="2" align="center"> <ul>
<li>Illustrate a hybrid system, a bouncing ball. We develop basic framework for simulating the system by coding one bounce and then repeated calls to one bounce</li>
<li>Introduction to passive dynamic walker as a hybrid system. Terminology of hybrid systems such as Poincare map, fixed point, linearized stability of the fixed point, and a simple analytical example. </li>
</ul>
</td>
</tr>
<tr>
<td align="center"><a href="https://www.youtube.com/watch?v=YrnhthxnVVU&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=16">Hybrid Systems Termonology</a></td>
<td align="center"><a href="legs/notes/Lec7b_hybrid_terminology.pdf">Hybrid Terminology PDF</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="2" align="center"><b>8. </b><strong>Passive Dynamic Walkers</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=rCfF-hsvCG8&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=17">Passive Dynamic Walker (Pt1)</a></td>
<td align="center"><a href="legs/notes/Lec8a_passivewalker_part1.pdf">Passive Dynamic Walker PDF 1</a></td>
<td align="center" rowspan="2"><a href="legs/code/lec8_passivewalker.zip">Lec 8 Code</a></td>
<td rowspan="2"><ul>
<li>Intuition behind writing the equations of motion. Use of Euler-Lagrage equations to derive the equation for stance phase.</li>
<li>Use of Euler-Lagrage equations to derive the equations for heelstrike. Some intuition about how to simulate the system. </li>
</ul>
</td>
</tr>
<tr style="background-color: #f0f0f2" align="center">
<td><a href="https://www.youtube.com/watch?v=3hnDr_zOWV4&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=18">Passive Dynamic Walker (Pt2)</a></td>
<td> <a href="legs/notes/Lec8b_passivewalker_part2.pdf">Passive Dynamic Walker PDF 2</a></td>
</tr>
<tr>
<td rowspan="1" align="center"><b>15. </b><strong>Trajectory simulation</strong></td><br>
<td align="center"><a href="https://www.youtube.com/watch?v=krGtHrMJfXc">15b. Trajectory Generation</a></td>
<td align="center"><a href="legs/notes/Lec15b_Trajectory_Generation.pdf">Trajactory Generations PDF</a></td>
<td align="center"><a href="legs/code/lec15b_trajectory_generation.zip">Lec 15b Code</a></td>
<td><ul>
<li>Generating a reference trajectory using polynomials and given start and end conditions</li>
</ul>
</td>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="2" align="center"><b>17.2 </b><strong>Control Patitioning/Feedback Linearization</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=vCauH-fdbQY&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=29">Control Partitioning (pt1)</a></td>
<td align="center"><a href="legs/notes/Lec17b_FeedbackLinearization_part1.pdf">Feedback Lineraization PDF 1</a></td>
<td align="center"><a href="legs/code/Lec17b_control_partitioning.zip">Lec 17b Code</a></td>
<td rowspan="2"><ul>
<li>This section introduces control partitioning or feedback linearization to track the reference motion.</li>
<li>The key idea is to cancel the nonlinear dynamics and gravitational dynamics followed by wrapping a feedback controller</li>
<li>The concepts are illustrated using simple MATLAB examples.</li>
<li>Additional methods such as feed-forward, gravity + feedback, proportional-integral-derivative control are also introduced.</li>
</ul></td>
</tr>
<tr style="background-color: #f0f0f2" align="center">
<td> <a href="https://www.youtube.com/watch?v=YCAKSYM_r7Y&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=30">Control Partitioning (pt2)</a></td>
<td> <a href="legs/notes/Lec17c_FeedbackLinearization_part2.pdf">Feedback Lineraization PDF 2</a></td>
<td align="center"> <a href="legs/code/Lec17c_control_partitioning.zip">Lec 17c Code</a></td>
</tr>
<tr>
<td align="center"><strong>23. </strong><strong>Legged mechanics for Walkers</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=jBMEm9U2Pbk&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=36">Walker with Feedback Linerazation</a></td>
<td align="center"> <a href="legs/notes/Lec23_Walker_Partial_Feedback_Linearization.pdf">Mechanics of Walkers PDF</a></td>
<td align="center"> <a href="legs/code/Lec23_Walker_with_partial_feedback_linearization.zip"> Lec 23 Code</a></td>
<td><ul>
<li>Since one of the two joints of the robt are unactuated, one can only usal partial feedback to control one joint</li>
<li>The other joint is left free and is analzed using tools from hybrid systems (see Terminology for hybrid systems)</li>
</ul>
</td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><strong>14b. Foot Placement control of Walker</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=8aAyfx6JNDw&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=26">Walker foot placement</a></td>
<td align="center"> <a href="legs/notes/Lec14b_FootPlacement_Walker.pdf">Walker Foot Control PDF</a></td>
<td align="center"><a href="legs/code/Lec14b_walker_foot_placement.zip">Lec 14b Code</a></td>
<td><ul>
<li>This section sketches some ideas on developing a foot placement control using a table lookup.</li>
<li>No Code provided</li>
</ul></td>
</tr>
</table>
<div id="mod5">
<br><br>
</div>
<br>
<div>
<h2 align="center"><strong>Module 5: </strong> 3D Biped walking (MATLAB)</h2>
</div>
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr style="background-color: #f0f0f2" align="center">
<td><b>26. </b><strong>Euler Parameters and Rotations</strong></td>
<td> <a href="https://www.youtube.com/watch?v=v7XDqFt7a90&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=41">Rotations and Euler Parameters</a></td>
<td><a href="legs/notes/Lec26_3D_rotations.pdf">3D rotations and Velocity PDF</a></td>
<td> <a href="legs/code/Lec26_3Drotations.zip"> Lec 26 Code</a></td>
<td> Introduction to 3D rotations using Euler Angles</td>
</tr>
<tr>
<td align="center"><b>27. </b><strong>Angular Velocity</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=JI-pNtvodJA&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=42">3D anguar Velocity</a></td>
<td align="center"><a href="legs/notes/Lec27_3D_angularvelocity.pdf">3D angular Velocity PDF</a></td>
<td align="center">N/A</td>
<td><ul>
<li>Euler-Lagrange equations applied to a free falling block</li>
<li>This includes derivations, simulations and animation for the falling block.</li>
</ul></td>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="2" align="center"><b>29. </b><strong>Zero Reference Model</strong></td>
<td> <a href="https://www.youtube.com/watch?v=VijV9o3rekQ&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=44">Zero Reference Model for Kimetics</a></td>
<td rowspan="2" align="center"><a href="legs/notes/Lec29a_zero_reference_model.pdf">Zero Reference Model PDF</a></td>
<td rowspan="2" align="center"> <a href="legs/code/Lec29b_mex_files.zip"> Lec 29 Code</a></td>
<td rowspan="2"><ul>
<li>Since Euler-Lagrange equations for simple systems get unwiedly it is recommended to these time consuming equations to C (called MEX files) and call them from MATLAB</li>
<li>This section illustrates how to write MEX files and demonstrates derivation, simulation, and animation of a n-link pendulum where the number of links n can be set by the user</li>
</ul></td>
</tr>
<tr style="background-color: #f0f0f2">
<td><a href="https://www.youtube.com/watch?v=Hn0ZYvWG5a4">MEX Files MATLAB to C++ Interface</a></td>
</tr>
<tr>
<td rowspan="2" align="center"><b>8. </b><strong>Passive Dynamic Walkers</strong></td>
<td><a href="https://www.youtube.com/watch?v=rCfF-hsvCG8&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=17">Passive Dynamic Walker (Pt1)</a></td>
<td><a href="legs/notes/Lec8a_passivewalker_part1.pdf">Passive Dynamic Walker PDF 1</a></td>
<td align="center" rowspan="2"><a href="legs/code/lec8_passivewalker.zip">Lec 8 Code</a></td>
<td rowspan="2"><ul>
<li>Intuition behind writing the equations of motion. Use of Euler-Lagrage equations to derive the equation for stance phase.</li>
<li>Use of Euler-Lagrage equations to derive the equations for heelstrike. Some intuition about how to simulate the system. </li>
</ul>
</td>
</tr>
<tr>
<td><a href="https://www.youtube.com/watch?v=3hnDr_zOWV4&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=18">Passive Dynamic Walker (Pt2)</a></td>
<td> <a href="legs/notes/Lec8b_passivewalker_part2.pdf">Passive Dynamic Walker PDF 2</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>15. </b><strong>Trajectory generation</strong></td><br>
<td><a href="https://www.youtube.com/watch?v=krGtHrMJfXc">15b. Trajectory Generation</a></td>
<td><a href="legs/notes/Lec15b_Trajectory_Generation.pdf">Trajactory Generations PDF</a></td>
<td align="center"><a href="legs/code/lec15b_trajectory_generation.zip">Lec 15b Code</a></td>
<td><ul>
<li>Generating a reference trajectory using polynomials and given start and end conditions</li>
</ul>
</td>
</tr>
<tr>
<td rowspan="2" align="center"><b>17.2 </b><strong>Control Patitioning/Feedback Linearization</strong></td>
<td> <a href="https://www.youtube.com/watch?v=vCauH-fdbQY&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=29">Control Partitioning (pt1)</a></td>
<td><a href="legs/notes/Lec17b_FeedbackLinearization_part1.pdf">Feedback Lineraization PDF 1</a></td>
<td align="center"><a href="legs/code/Lec17b_control_partitioning.zip">Lec 17b Code</a></td>
<td rowspan="2"><ul>
<li>This section introduces control partitioning or feedback linearization to track the reference motion.</li>
<li>The key idea is to cancel the nonlinear dynamics and gravitational dynamics followed by wrapping a feedback controller</li>
<li>The concepts are illustrated using simple MATLAB examples.</li>
<li>Additional methods such as feed-forward, gravity + feedback, proportional-integral-derivative control are also introduced.</li>
</ul></td>
</tr>
<tr>
<td> <a href="https://www.youtube.com/watch?v=YCAKSYM_r7Y&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=30">Control Partitioning (pt2)</a></td>
<td> <a href="legs/notes/Lec17c_FeedbackLinearization_part2.pdf">Feedback Lineraization PDF 2</a></td>
<td align="center"> <a href="legs/code/Lec17c_control_partitioning.zip">Lec 17c Code</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"> <b>30. </b> <strong> Biped Control and Simulations</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=0u_-KxBioAo&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=46">Humaniod Modeling and Control</a></td>
<td align="center"> <a href="legs/notes/Lec30_humanoid.pdf">Humanoid PDF</a></td>
<td align="center"> <a href="legs/code/Lec30_humanoid.zip"> Lec 30 Code </a></td>
<td><ul>
<li>Uses Euler-Lagrange equations to derive the equation</li>
<li>Using trajectory generation to generate profiles for hip and knee.</li>
<li>Use of partial feedback linearization to control the 3D model.</li>
<li>Includes simulations, generation of MEX files, and animations.</li>
</ul></td>
</tr>
</table>
<div id="mod6">
<br><br>
</div>
<br>
<div>
<h2 align="center"><strong>Module 6: </strong>2D Rimless wheel modeling (CoppeliaSim) </h2>
</div>
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr>
<td align="center"><strong>4. Intro. to Coppelia Sim</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=pNZ1ux164q8&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=10">Projectile using Euler-Lagrange</a></td>
<td align="center">N/A</td>
<td align="center"><a href="legs/code/lec4_CoppeliaSim_projectile.zip">Lec 4 Code</a></td>
<td> <ul>
<li>Shows how to model and simulate a 2D projectile with drag in CoppeliaSim.</li>
</ul>
</td>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="1" align="center"><b>9. </b><strong>Rimless Wheel Modeling in CoppeliaSim</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=Mbrs5IK46Ys&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=19">Rimless Wheel Modeling Video</a></td>
<td align="center"> N/A</td>
<td align="center"> <a href="legs/code/lec9_CoppeliaSim_rimlesswheel.zip">Lec 9 Code</a></td>
<td>Shows different ways of modeling a 2D rimless wheel:
<ol>
<li> Using two wheels attached side to side</li>
<li>Using a spherical joint to constrain the wheel to 2D.</li>
</ol>
</td>
</tr>
<tr>
<td align="center"><b>15. </b><strong>Two tricks for simulating planar systems in CoppeliaSim</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=RTq-HxSx3IE">15a. Two tricks for 2D legged simulation</a></td>
<td align="center"><a href="legs/notes/Lec15a_TwoTricks_PlanarSystems_Coppeliasim.pdf">Walker Simulations PDF</a></td>
<td align="center"><a href="legs/code/lec15a_TwoTricks_PlanarLegged_CoppeliaSim.zip">Lec 15a Code</a></td>
<td> <ul>
<li>This rimless model shown here has a torso. </li>
<li>The torso can be controlled to a constant pitch angle to get the rimless wheel to move continuously.</li>
<li> (See 5 Modeling and control in CoppeliaSim on how to do position, velocity, and torque control).</li>
</ul></td>
</tr>
</table>
<div id="mod7">
<br><br>
</div>
<br>
<div>
<h2 align="center"><strong>Module 7: </strong>2D Passive dynamic Walker (CoppeliaSim) </h2>
</div>
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><strong>4. Intro to Coppelia Sim</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=pNZ1ux164q8&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=10">Projectile using Euler-Lagrange</a></td>
<td align="center">N/A</td>
<td align="center"><a href="legs/code/lec4_CoppeliaSim_projectile.zip">Lec 4 Code</a></td>
<td> <ul>
<li>Shows how to model and simulate a 2D projectile with drag in CoppeliaSim.</li>
</ul>
</td>
</tr>
<tr>
<td rowspan="1" align="center"><b>9. </b><strong>CoppeliaSim Rimless Wheel Modeling</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=Mbrs5IK46Ys&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=19">Rimless Wheel Modeling Video</a></td>
<td align="center"> N/A</td>
<td align="center"> <a href="legs/code/lec9_CoppeliaSim_rimlesswheel.zip">Lec 9 Code</a></td>
<td>Shows different ways of modeling a 2D rimless wheel:
<ol>
<li> Using two wheels attached side to side</li>
<li>Using a spherical joint to constrain the wheel to 2D.</li>
</ol>
</td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>15. </b><strong>Two tricks for simulating planar systems in coppeliaSim</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=RTq-HxSx3IE">15a. Two tricks for 2D legged simulation</a></td>
<td align="center"><a href="legs/notes/Lec15a_TwoTricks_PlanarSystems_Coppeliasim.pdf">Walker Simulations PDF</a></td>
<td align="center"><a href="legs/code/lec15a_TwoTricks_PlanarLegged_CoppeliaSim.zip">Lec 15a Code</a></td>
<td> <ul>
<li>This rimless model shown here has a torso. </li>
<li>The torso can be controlled to a constant pitch angle to get the rimless wheel to move continuously.</li>
<li> (See 5 Modeling and control in CoppeliaSim on how to do position, velocity, and torque control).</li>
</ul>
</td>
</tr>
<tr>
<td align="center"><b>22. </b><strong>Finite State machine to Control Pendulum</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=ms1V_IuiK-A&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=35">Using State machine to Control Pendulum</a></td>
<td align="center">N/A<br></td>
<td align="center"><a href="legs/code/Lec22_Finite_State_Machine.zip"> Lec 22 Code</a></td>
<td><ul>
<li>A finite state machine is a control architecture to develop controllers for walking machines.</li>
<li>This example illustrates how to program a finite state machine to do a swing up and hold. </li>
<li>Might be helful to review lecture 5. </li>
</ul></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>24. </b><strong>Passive Dynamic Walker</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=5CORuzqC61I&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=38"> Passive Dynamic Walker Video</a> </td>
<td align="center">N/A</td>
<td align="center"><a href="legs/code/Lec24_PassiveDynamicWalker_CoppeliaSim.zip">Lec 24 Code</a></td>
<td><ul>
<li>A model of passive walking with articulated knees (to get ground clearance) and hip spring to tune frequency of the swinging legs.</li>
<li>The two tricks <a href="#Lecture 15">(see 15 a)</a>are used to keep track of absolute angles and rotate gravity.</li>
<li>A finite state machine is used to generate the simulation. </li>
</ul>
</td>
</tr>
</table>
<br>
<div id="FullTable">
<br><br>
</div>
<!--THE START OF THE ALL LECTURES-->
<br>
<div>
<h1 class="display-2 text-center"> <strong> </strong> All Lecture Material</h1>
</div>
<table style="width:100%" border="3">
<tr>
<!-- Adding the header colums of content materials and videos -->
<th style="text-align: center"><big><big>Topic (Units)</big></big></th>
<th style="text-align: center"><big><big>Videos</big></big></th>
<th style="text-align: center"><big><big>Lecture Notes</big></big></th>
<th style="text-align: center"><big><big>Source Code</big></big></th>
<th style="text-align: center"><big><big>Description</big></big></th>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="3" align="center"><strong>MATLAB Tutorials</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=Am2PJmDh0GE&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5">MATLAB Basics</a></td>
<td align="center"> <a href="legs/notes/MATLAB-Basics.pdf">Basics PDF</a></td>
<td rowspan="3" align="center">N/A</td>
<td rowspan="3"><ul>
<li>MATLAB tutorials filled with helpful knowledge</li>
<li>Gives basic understanding of MATLAB Animations and Scripts</li>
</ul>
</td>
</tr>
<tr style="background-color: #f0f0f2" align="center">
<td align="center"><a href="https://www.youtube.com/watch?v=wnK08yAXpPY&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=2"> MATLAB Scrpits</a> </td>
<td align="center"><a href="legs/notes/MATLAB-Scripts.pdf">Scripts PDF</a> </td>
</tr>
<tr style="background-color: #f0f0f2" align="center">
<td rowspan="1" align="center"> <a href="https://www.youtube.com/watch?v=8uRHF3lrc3k&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=3"> MATLAB Animations </a></td>
<td align="center"> <a href="legs/notes/MATLAB-Animations.pdf">Animations PDF </a></td>
</tr>
<tr>
<td align="center"><strong>1. Foward Kinematics</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=rn5bZ8AHl6s&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=5">Forward Kinematics Video </a></td>
<td align="center"> <a href="legs/notes/Lec1_fwd_kinematics.pdf"> Forward Kinemetics PDF</a></td>
<td align="center"> <a href="legs/code/lec1_forwardkinematics.zip" >Lec Code 1</a></td>
<td><ul><li>Representing the kinematics using homogenous rotaions and translations</li>
<li>Forward kinematics gives the end-effector position for the given joint angles</li>
<li>llustrated using a two-link planar manipulator.</li>
</ul> </td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"> <b>2. 2D Inverse Kinematics</b></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=v9-DZoZhWHM&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=6">Inverse Kinemetics Video</a></td>
<td align="center"><a href="legs/notes/Lec2_inverse_kinematics.pdf">Inverse Kinemetics PDF</a></td>
<td align="center"> <a href="legs/code/lec2_inversekine_projectile.zip">Lec Code 2</a></td>
<td><ul>
<li>Inverse kinematics is solving for joint angles for a given position of the end-effector. </li>
<li> This is harder because there may be a single, multiple or no solution to the inverse kinematics problem.</li>
<li>Here we use root finding to solver for the inverse kinematics and illustrate it on a 2D planar manipulator.</li>
</ul>
</td>
</tr>
<tr>
<td rowspan="4" align="center"><b>3. Dynamics using Euler-Lagrange Equations </b> </td>
<td align="center"> <a href = "https://www.youtube.com/watch?v=XcTsx85kjV8"><strong>3a.</strong> Dynamics using Euler-Lagrange Equations</a></td>
<td rowspan="4" align="center"> <a href="legs/notes/Lec3_dynamics_euler_lagrange.pdf">Dynamics of Euler-Lagrange PDF</a></td>
<td rowspan="4" align="center"> <a href="legs/code/lec3_euler_lagrange.zip">Lec Code 3</a></td>
<td rowspan="4"> <ul>
<li>Algorithm for solving for equations of motion using Euler-Lagrange equations. This is illistrated on a simple projectile withdrag</li>
<li>Basics of differentiation and chain rule. Writing symbolic code to derive the equations of motion.</li>
<li>Demonstrate how to derive equations of motion of a planar double pendulum</li>
</ul></td>
</tr>
<tr align="center">
<td> <a href="https://www.youtube.com/watch?v=TmYCPXQLDZU"><strong>3b.</strong> Deriving Equations of Motion</a></td>
</tr>
<tr align="center">
<td> <a href="https://www.youtube.com/watch?v=nIxBa8WmdOI"><strong>3c.</strong> Double Pendulum Simulation</a></td>
</tr>
<tr align="center">
<td> <a href="https://www.youtube.com/watch?v=pNZ1ux164q8"><strong>3d.</strong> 1D projectile using Euler-Lagrange</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><strong>4. Intro. to Coppelia Sim</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=pNZ1ux164q8&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=10">Projectile using Euler-Lagrange</a></td>
<td align="center">N/A</td>
<td align="center"><a href="legs/code/lec4_CoppeliaSim_projectile.zip">Lec 4 Code</a></td>
<td> <ul>
<li>Shows how to model and simulate a 2D projectile with drag in CoppeliaSim.</li>
</ul>
</td>
</tr>
<tr>
<td align="center"><b>5. </b> <strong> Modeling in CoppeliaSim</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=ANqvp7ZabG0&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=12">Modeling Simple Pendulum</a></td>
<td align="center"> N/A</td>
<td align="center"> <a href="legs/code/lec5_CoppeliaSim_pendulum.zip">Lec 5 Code</a></td>
<td><ul>
<li>Modeling for a simple pendulum in CoppeliaSim</li>
<li>Then we demonstrate how to do velocity, postion and torque using Lua scripts.</li>
</ul></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><strong>6.</strong> <strong>Jacobian Applications </strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=RdIXGO9aBnc&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=13">Jacobian and its Applications</a></td>
<td align="center"> <a href="legs/notes/Lec6a_Jacobian.pdf">Jacobian PDF</a></td>
<td align="center"><a href="legs/code/lec6a_example_jacobian.zip">Lec 6 Code</a></td>
<td><ul>
<p align="center">Basics of Jacobian. We show how to compute the Jacobian using symbolic computations and finite differences. We present two applications of Jacobian</p>
<li>Find the velocity of points of interest and illustrated on planar double pendulum</li>
<li>Find the static forces on a double pendulum.</li>
</ul>
</td>
</tr>
<tr>
<td rowspan="2" align="center"><b>7. Intro. to Hybrid Systems </b></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=empN1pMBxkk">Hybrid Systems Bouncing Ball Example</a></td>
<td align="center"><a href="legs/notes/Lec7a_hybrid_intro.pdf">Hybrid Intro PDF</a></td>
<td rowspan="2" align="center"><a href="legs/code/lec7a_ball_bounce.zip">Lec 7 Code</a></td>
<td rowspan="2" align="center"> <ul>
<li>Illustrate a hybrid system, a bouncing ball. We develop basic framework for simulating the system by coding one bounce and then repeated calls to one bounce</li>
<li>Introduction to passive dynamic walker as a hybrid system. Terminology of hybrid systems such as Poincare map, fixed point, linearized stability of the fixed point, and a simple analytical example. </li>
</ul>
</td>
</tr>
<tr>
<td align="center"><a href="https://www.youtube.com/watch?v=YrnhthxnVVU&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=16">Hybrid Systems Termonology</a></td>
<td align="center"><a href="legs/notes/Lec7b_hybrid_terminology.pdf">Hybrid Terminology PDF</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="3" align="center"><strong>8. </strong><strong>Passive Dynamic Walkers</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=rCfF-hsvCG8&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=17"><strong>8a.</strong> Passive Dynamic Walker (Pt1)</a></td>
<td align="center"><a href="legs/notes/Lec8a_passivewalker_part1.pdf">Passive Dynamic Walker PDF 1</a></td>
<td align="center" rowspan="3"><a href="legs/code/lec8_passivewalker.zip">Lec 8 Code</a></td>
<td rowspan="3"><ul>
<li>(Pt1- derivation) Intuition behind writing the equations of motion. Use of Euler-Lagrage equations to derive the equation for stance phase.</li>
<li>(Pt2 - derivation) Use of Euler-Lagrage equations to derive the equations for heelstrike. Some intuition about how to simulate the system</li>
<li>(Pt3- coding) Live coding of the equations to generate steady state gaits and analyze their linearized stability (see Terminology for hybrid systems)</li>
</ul></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><a href="https://www.youtube.com/watch?v=3hnDr_zOWV4&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=18"><strong>8b. </strong> Passive Dynamic Walker (Pt2)</a></td>
<td rowspan="2" align="center"> <a href="legs/notes/Lec8b_passivewalker_part2.pdf">Passive Dynamic Walker PDF 2</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><a href="https://www.youtube.com/watch?v=3hnDr_zOWV4"><strong> 8c.</strong> Passive Dynamic Walker (Pt3) Coding</a></td>
</tr>
<tr>
<td rowspan="1" align="center"><b>9. </b><strong>Rimless Wheel Modeling in CoppeliaSim</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=Mbrs5IK46Ys&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=19">Rimless Wheel Modeling Video</a></td>
<td align="center"> N/A</td>
<td align="center"> <a href="legs/code/lec9_CoppeliaSim_rimlesswheel.zip">Lec 9 Code</a></td>
<td>Shows different ways of modeling a 2D rimless wheel:
<ol>
<li> Using two wheels attached side to side</li>
<li>Using a spherical joint to constrain the wheel to 2D.</li>
</ol>
</td>
</tr>
<tr id="Lecture10" align="center" style="background-color: #f0f0f2">
<td rowspan="1"><b>10. Jacobian Application Review </b></td>
<td rowspan="1"><a href="https://www.youtube.com/watch?v=hscXG4GKTm0&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=20">Jacobian Review Problems</a></td>
<td> <a href="legs/notes/Lec10a_Jacobian.pdf"> Jacobian Review PDF</a></td>
<td align="center">N/A</td>
<td>We review Jacobians disscussed in Unit 6.</td>
</tr>
<tr>
<td rowspan="2" align="center"><b>11. </b><strong>Closed Loop 5-link Chain Simuations</strong></td>
<td align="center"> <a href="https://www.youtube.com/watch?v=0Xg2KGAgQBg&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=21">Dynamics simulation of clsoed 5 chain loops</a></td>
<td rowspan="2" align="center"><a href="legs/notes/Lec11_Closed_Loop_Chains.pdf">Closed Chain Loops PDF</a></td>
<td align="center"> <a href="legs/code/Lec11a_ClosedLoopSystems.zip">Lec 11.1 Code</a></td>
<td rowspan="2"><ul>
<li>We demonstrate how to derive equations of a closed-loop chain and simulate.</li>
<li>We start off deriving equations of a 5-link pendulum and then add a constraint to create the closed loop chain. </li>
<li>Next, we show how to model and simulate a closed-loop chain in Coppelia Sim</li>
</ul></td>
</tr>
<tr align="center">
<td><a href="https://www.youtube.com/watch?v=4bwSXbMDrJM&feature=youtu.be">5-link Chain in Coppelia Sim</a></td>
<td> <a href="legs/code/Lec11b_CoppeliaSim_closed_chain.zip">Lec 11.2 Code</a></td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><b>12. Hopping model: Spring Loaded Inverted Pendulum</b></td>
<td align="center"><a href="https://www.youtube.com/watch?v=qI_94iU1S0c&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=23">Spring load inverted pendulum model</a></td>
<td align="center"><a href="legs/notes/Lec12_Hopping_Model.pdf">Hopping Model PDF</a></td>
<td align="center"> <a href="legs/code/Lec12_Spring_Loaded_Inverted_Pendulum.zip">Lec 12 Code</a></td>
<td>
<ul>
<li>Using Euler-Lagrange equations to <strong>derive</strong> the equations of motion.</li>
<li>Details on <strong>simulation</strong> and animation.</li>
<li><strong>Generating</strong> steady state gaits and analyzing linear stability (see terminolgy for hybrid systems)</li>
</ul>
</td>
</tr>
<tr>
<td align="center"><b>13. </b><strong>CoppeliaSim Custom PID Control</strong></td>
<td align="center"><a href="https://www.youtube.com/watch?v=_hN8zYMbXt0&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=24">Custom PID Control Video</a></td>
<td align="center">N/A</td>
<td align="center"><a href="legs/code/Lec13_Coppelia_Pendulum_CustomPID.zip">Lec 13 Code</a></td>
<td><ul>
<li>We illustrate how to do a custom PID control.</li>
<li>The pendulum is in torque control mode and the PID is on either the position or suitable cartesian coordinate.</li>
</ul></td>
</tr>
<tr style="background-color: #f0f0f2">
<td rowspan="2" align="center"><b>14. Foot Placment Control</b></td>
<td align="center"><a href="https://www.youtube.com/watch?v=7eWLyo2a5UE&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=25">Foot Placement Control for Hopper</a></td>
<td align="center"><a href="legs/notes/Lec14a_FootPlacement_Hopper.pdf">Hopper Foot Control PDF</a></td>
<td align="center"> <a href="legs/code/Lec14a_raibert_controller_for_hopper.zip">Lec 14.1 Code</a></td>
<td><ul>
<li>Foot placement control of hopper using Raibert’s control</li>
<li>This section derives a simple control law using some intuition.</li>
<li>MATLAB code shows how the controller works.</li>
</ul>
</td>
</tr>
<tr style="background-color: #f0f0f2">
<td align="center"><a href="https://www.youtube.com/watch?v=8aAyfx6JNDw&list=PLc7bpbeTIk74esZj1hd7LF3VYeJM3NYo5&index=26">Foot Placement Control for Walker</a></td>
<td align="center"> <a href="legs/notes/Lec14b_FootPlacement_Walker.pdf">Walker Foot Control PDF</a></td>
<td align="center"><a href="legs/code/Lec14b_walker_foot_placement.zip">Lec 14.2 Code</a></td>
<td> <ul>
<li>This section sketches some ideas on developing a foot placement control using a table lookup.</li>
<li>No code provided</li>
</ul></td>
</tr>
<tr align="center">
<td rowspan="2"><b>15. </b><strong>CoppeliaSim Walker and Hopper Simulations</strong></td>