-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_vis_model.py
223 lines (168 loc) · 8.11 KB
/
evaluate_vis_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import logging
import os
import numpy as np
import torch
from common.opt import opts
from einops import rearrange
from tqdm import tqdm
import torch.utils.data
import glob
from model.block.refine import refine
from model.strided_vis_graformer import Model as StridedVisGraformer
from common.utils import *
from common.camera import get_uvd2xyz
from common.load_data_h36m import Fusion as Fusion_h36m
from common.h36m_dataset import Human36mDataset
def main(opt):
manualSeed = 0
np.random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.cuda.manual_seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
print('==> Using settings {}'.format(opt))
print('==> Loading dataset...')
dataset_dir = os.path.join(opt.root_path, opt.dataset)
if opt.dataset == 'h36m':
dataset_path = os.path.join(dataset_dir, 'data_3d_' + opt.dataset + '.npz')
dataset = Human36mDataset(dataset_path, opt)
test_data = Fusion_h36m(opt=opt, train=False, dataset=dataset, root_path=dataset_dir, keypoints=opt.keypoints)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=opt.batch_size,
shuffle=False, num_workers=int(opt.workers), pin_memory=True)
else:
raise KeyError('Invalid dataset')
actions = define_actions(opt.actions, opt.dataset)
# Create model
model = {}
model_trans = StridedVisGraformer(opt).cuda()
# Use pretrained weights for spatial part without pose regression head
if opt.pretrained_spatial_module_init:
filename = os.path.join(opt.pretrained_spatial_module_dir, opt.pretrained_spatial_module)
pretrained_dict = torch.load(filename)['model_pos']
model_trans.Transformer.load_state_dict(pretrained_dict, strict=False)
opt.freeze_spatial_module = True
model_trans.freeze_spatial_module()
model['trans'] = model_trans
model['refine'] = refine(opt).cuda()
model_dict = model['trans'].state_dict()
all_param = []
lr_spatial = opt.spatial_module_lr
lr = opt.lr
lr_refine = opt.lr_refine
for i_model in model:
all_param += list(model[i_model].parameters())
epoch_start = 1
if opt.reload:
model_path = sorted(glob.glob(os.path.join(opt.previous_dir, '*.pth')))
no_refine_path = []
for path in model_path:
if path.split('/')[-1][0] == 'n' and 'best' in path:
no_refine_path = path
print(no_refine_path)
break
pre_dict = torch.load(no_refine_path)
pre_dict_model = pre_dict['model_pos']
for name, key in model_dict.items():
model_dict[name] = pre_dict_model[name]
model['trans'].load_state_dict(model_dict)
if opt.freeze_spatial_module:
model['trans'].freeze_spatial_module()
if opt.freeze_trans_module:
model['trans'].freeze()
refine_dict = model['refine'].state_dict()
if opt.refine_reload:
model_path = sorted(glob.glob(os.path.join(opt.previous_dir, '*.pth')))
refine_path = []
for path in model_path:
if path.split('/')[-1][0] == 'r' and 'best' in path:
refine_path = path
print(refine_path)
break
pre_dict_refine = torch.load(refine_path)
pre_dict_refine_model = pre_dict_refine['model_pos']
for name, key in refine_dict.items():
refine_dict[name] = pre_dict_refine_model[name]
model['refine'].load_state_dict(refine_dict)
count_model_params = sum(p.numel() for p in all_param)
print('INFO: Parameter count:', count_model_params)
count_trainable_model_params = sum(p.numel() for p in all_param if p.requires_grad)
print('INFO: Trainable parameter count:', count_trainable_model_params)
t = 1.0
while t <= 1.0:
print(t)
# p1, p2, acc, ap, tnr = step(opt, actions, test_dataloader, model, t)
p1, p2, acc = step(opt, actions, test_dataloader, model, t)
# info = 'p1: %.2f, acc: %.4f, ap: %.4f, tnr: %.4f' % (p1, acc, ap, tnr)
info = 'p1: %.2f, acc: %.4f' % (p1, acc)
logging.info(info)
print(info)
t += 0.1
return
def step(opt, actions, dataLoader, model, threshold):
model_trans = model['trans']
model_refine = model['refine']
model_trans.eval()
model_refine.eval()
action_error_sum = define_error_mpjpe_list(actions)
action_error_sum_refine = define_error_mpjpe_list(actions)
action_error_sum_vis_acc = define_acc_list(actions)
# action_error_sum_vis_binary_class_metrics = define_binary_class_metrics_list(actions)
min_thr = threshold
max_thr = threshold + 0.1
for i, data in enumerate(tqdm(dataLoader, 0)):
batch_cam, gt_3D, gt_2D, vis, input_2D, inputs_2D_score, dist, scale, bb_box, extra = data
action, subject, cam_ind = extra
[input_2D, vis, gt_3D, gt_2D, batch_cam, scale, bb_box, dist] = get_variable('test', [input_2D, vis, gt_3D, gt_2D, batch_cam, scale, bb_box, dist])
input_2D, output_3D, output_3D_VTE, output_vis = input_augmentation_vis(input_2D, model_trans)
out_target = gt_3D.clone()
out_target[:, :, 0] = 0
if out_target.size(1) > 1:
out_target_single = out_target[:, opt.pad].unsqueeze(1)
gt_3D_single = gt_3D[:, opt.pad].unsqueeze(1)
else:
out_target_single = out_target
gt_3D_single = gt_3D
if opt.refine:
pred_uv = input_2D[:, opt.pad, :, :].unsqueeze(1)
uvd = torch.cat((pred_uv, output_3D[:, :, :, 2].unsqueeze(-1)), -1)
xyz = get_uvd2xyz(uvd, gt_3D_single, batch_cam)
xyz[:, :, 0, :] = 0
output_3D = model_refine(output_3D, xyz)
N, F = input_2D.size(0), input_2D.size(1)
output_3D[:, :, 0, :] = 0
# vis_mask = (max_thr > dist).logical_and(dist >= min_thr)
vis_mask = dist >= min_thr
action_error_sum = test_calculation_mpjpe(output_3D, out_target, action, action_error_sum)
if opt.refine:
action_error_sum_refine = test_calculation_mpjpe(output_3D, out_target, action, action_error_sum_refine)
action_error_sum_vis_acc = test_calculation_acc(output_vis, vis, action, action_error_sum_vis_acc, opt.dataset, vis_mask)
# action_error_sum_vis_binary_class_metrics = test_calculation_binary_class_metrics(output_vis, vis, action, action_error_sum_vis_binary_class_metrics, opt.dataset, vis_mask)
acc = print_acc(opt.dataset, action_error_sum_vis_acc, opt.train)
# ap, npv, tnr, tpr = print_binary_class_metrics(opt.dataset, action_error_sum_vis_binary_class_metrics, opt.train)
if opt.refine:
p1, p2 = print_error_mpjpe(opt.dataset, action_error_sum_refine, opt.train)
else:
p1, p2 = print_error_mpjpe(opt.dataset, action_error_sum, opt.train)
# return p1, p2, acc, ap, tnr
return p1, p2, acc
def input_augmentation_vis(input_2D, model_trans):
joints_left = [4, 5, 6, 11, 12, 13]
joints_right = [1, 2, 3, 14, 15, 16]
input_2D_non_flip = input_2D[:, 0]
input_2D_flip = input_2D[:, 1]
output_3D_non_flip, output_3D_non_flip_VTE, output_non_flip_vis, _, _, _, _ = model_trans(input_2D_non_flip)
output_3D_flip, output_3D_flip_VTE, output_flip_vis, _, _, _, _ = model_trans(input_2D_flip)
output_3D_flip_VTE[:, :, :, 0] *= -1
output_3D_flip[:, :, :, 0] *= -1
output_3D_flip_VTE[:, :, joints_left + joints_right, :] = output_3D_flip_VTE[:, :, joints_right + joints_left, :]
output_3D_flip[:, :, joints_left + joints_right, :] = output_3D_flip[:, :, joints_right + joints_left, :]
output_3D_VTE = (output_3D_non_flip_VTE + output_3D_flip_VTE) / 2
output_3D = (output_3D_non_flip + output_3D_flip) / 2
input_2D = input_2D_non_flip
output_flip_vis[:, :, joints_left + joints_right, :] = output_flip_vis[:, :, joints_right + joints_left, :]
output_vis = (output_non_flip_vis + output_flip_vis) / 2
return input_2D, output_3D, output_3D_VTE, output_vis
if __name__ == '__main__':
opt = opts().parse()
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
main(opt)