We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好,非常感谢你实现了这个工程,请问lora微调之后的推断方式是否是下面这样?
import torch from diffusers import UNetSpatioTemporalConditionModel, StableVideoDiffusionPipeline from diffusers.utils import load_image, export_to_video, export_to_gif unet = UNetSpatioTemporalConditionModel.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt-1-1", subfolder="unet", torch_dtype=torch.float16, low_cpu_mem_usage=False, ) lora_folder = "outputs/pytorch_lora_weights.safetensors" unet.load_attn_procs(lora_folder) unet.to(torch.float16) unet.requires_grad_(False) pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt-1-1", unet=unet, low_cpu_mem_usage=False, torch_dtype=torch.float16, variant="fp16", local_files_only=True, ) pipe.to("cuda:0") image = load_image('bdd100k/images/track/train/0000f77c-6257be58/0000f77c-6257be58-0000001.jpg') image = image.resize((1024, 576)) generator = torch.manual_seed(-1) with torch.inference_mode(): frames = pipe(image, num_frames=14, width=1024, height=576, decode_chunk_size=8, generator=generator, motion_bucket_id=127, fps=8, num_inference_steps=30).frames[0] export_to_gif(frames, "0000f77c-6257be58-0000001_generated_lora.gif", fps=7) from IPython import display display.Image("0000f77c-6257be58-0000001_generated_lora.gif")
The text was updated successfully, but these errors were encountered:
No branches or pull requests
你好,非常感谢你实现了这个工程,请问lora微调之后的推断方式是否是下面这样?
The text was updated successfully, but these errors were encountered: