-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathComplexSimulation.qs
63 lines (52 loc) · 2.33 KB
/
ComplexSimulation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
namespace Quantum.ComplexSimulation {
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Measurement;
// Quantum Fourier Transform (QFT) - A key part of the algorithm for frequency analysis
operation QFT(qubits: Qubit[]) : Unit {
let n = Length(qubits);
for (i in 0..n-1) {
// Apply Hadamard gate to each qubit
H(qubits[i]);
for (j in i+1..n-1) {
// Apply controlled rotation for each qubit pair
let angle = 1.0 / (2.0 ^ (j - i + 1));
CR(qubits[j], qubits[i], angle * PI);
}
}
// Apply final Hadamard gate
ApplyToEach(H, qubits);
// Reverse the qubit order (to make the result readable)
ApplyToEach(X, qubits);
}
// Quantum Simulation of a complex system with differential equations (e.g., Schrödinger equation)
operation QuantumDifferentialEquationSolver() : Unit {
// Simulating a simple quantum system (Schrödinger equation)
mutable qubits = Qubit[5]; // Number of qubits for the system state
using (qubits) {
// Prepare the system in a superposition state
ApplyToEach(H, qubits);
// Simulate a quantum evolution (solving the Schrödinger equation)
for (i in 0..4) {
// Apply a series of rotations to simulate evolution
let angle = 2.0 * PI / (2.0 ^ (i + 1));
Rz(angle, qubits[i]); // Rotation around the Z-axis
Ry(angle, qubits[i]); // Rotation around the Y-axis
}
// Perform a Quantum Fourier Transform to analyze the frequencies of the system
QFT(qubits);
// Measure the qubits to observe the final state
let result = M(qubits[0]);
if (result == Zero) {
Message("The system evolved into state 0.");
} else {
Message("The system evolved into state 1.");
}
}
}
// Main function to run the quantum system simulation
operation RunComplexQuantumSimulation() : Unit {
// Run the quantum differential equation solver simulation
QuantumDifferentialEquationSolver();
}
}