-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
48 lines (40 loc) · 2.21 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
from deep_sprl.util.parameter_parser import parse_parameters
import deep_sprl.environments
import torch
def main():
parser = argparse.ArgumentParser("Self-Paced Learning experiment runner")
parser.add_argument("--base_log_dir", type=str, default="logs")
parser.add_argument("--type", type=str, default="wasserstein",
choices=["default", "random", "self_paced", "wasserstein", "alp_gmm",
"goal_gan", "acl", "plr", "vds", "gradient"])
parser.add_argument("--learner", type=str, default="ppo", choices=["ppo", "sac", "dqn"])
parser.add_argument("--env", type=str, default="point_mass_2d",
choices=["point_mass_2d", "sparse_goal_reaching", "emaze",
"unlockpickup", "point_mass_nd"])
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--n_cores", type=int, default=1)
args, remainder = parser.parse_known_args()
parameters = parse_parameters(remainder)
torch.set_num_threads(args.n_cores)
if args.env == "point_mass_2d":
from deep_sprl.experiments import PointMass2DExperiment
exp = PointMass2DExperiment(args.base_log_dir, args.type, args.learner, parameters, args.seed)
elif args.env == "point_mass_nd":
from deep_sprl.experiments import PointMassNDExperiment
exp = PointMassNDExperiment(args.base_log_dir, args.type, args.learner, parameters, args.seed)
elif args.env == "sparse_goal_reaching":
from deep_sprl.experiments import SparseGoalReachingExperiment
exp = SparseGoalReachingExperiment(args.base_log_dir, args.type, args.learner, parameters, args.seed)
elif args.env == "emaze":
from deep_sprl.experiments import EMazeExperiment
exp = EMazeExperiment(args.base_log_dir, args.type, args.learner, parameters, args.seed)
elif args.env == "unlockpickup":
from deep_sprl.experiments import UnlockPickupExperiment
exp = UnlockPickupExperiment(args.base_log_dir, args.type, args.learner, parameters, args.seed)
else:
raise RuntimeError("Unknown environment '%s'!" % args.env)
exp.train()
exp.evaluate()
if __name__ == "__main__":
main()