-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex_en.html
654 lines (595 loc) · 33 KB
/
index_en.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1, user-scalable=no">
<title>Mist</title>
<link rel="icon" href="./image/icon.png" type="image/gif">
<link rel="stylesheet" href="./css/bootstrap.min.css">
<link rel="stylesheet" href="./css/font/font.css">
<link rel="stylesheet" href="./css/style.css?v=1.02">
<link rel="stylesheet" href="./css/animate.min.css">
<link rel="stylesheet" href="./css/newStyle.css">
<script src="./js/other.js"></script>
<script src="./js/jquery.min.js"></script>
<script src="./js/fixedScroll.js"></script>
<script src="./js/fix.js"></script>
<script src="./js/bootstrap.min.js"></script>
</head>
<body>
<div id="root">
<nav class="navbar navbar-inverse showPhone">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed showPhone" data-toggle="collapse"
data-target="#bs-example-navbar-collapse-1" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index_en.html">
<img src="./image/logo.png" alt="">
</a>
</div>
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-ul-list">
<li><a href="#Download">Download</a></li>
<li><a href="https://discord.gg/DM5qxSW9bT">Community</a></li>
<li><a href="https://github.com/mist-project/mist-v2">GitHub</a></li>
<li><a href="#Faq">FAQ</a></li>
<li><a href="#Contact">Contact us</a></li>
<li><a target="_self" href="index.html">EN / 中</a></li>
</ul>
</div>
</div>
</nav>
<div class="header-top showPc">
<div class="header-item content">
<div><img src="./image/logo.png" alt=""></div>
<div>
<ul class="c_flex nav-item">
<!-- Download Community Github FAQ Contact us EN / 中 -->
<li><a href="#Download">Download</a></li>
<li><a href="https://discord.gg/DM5qxSW9bT">Community</a></li>
<li><a href="https://github.com/mist-project/mist-v2">GitHub</a></li>
<li><a href="#Faq">FAQ</a></li>
<li><a href="#Contact">Contact us</a></li>
<li><a target="_self" href="index.html">EN / 中</a></li>
</ul>
</div>
</div>
</div>
<!-- Banner部分 -->
<div class="container-banner">
<div class="banner-row">
<div class="container">
<p><img src="./image/logo_v4.png" alt=""></p>
<div class="desc">
<p>An image preprocessing tool to protect artworks </p>
<p>from AI-for-Art based mimicry</p>
</div>
<div>
<a class="path-item active"
href="https://github.com/mist-project/mist-v2#quick-start">See
our documentation for quick start</a>
</div>
</div>
</div>
</div>
<!-- What is Mist -->
<div class="container">
<div class="block"> </div>
<div class="content-desc">
<p> We clarify the key effect of Mist-V2 and its constraints in the following statement to avoid misunderstanding: </p>
<b>“Apply this noise. Mist-v2 may raise the cost of a motivated and professional attacker. And it might help against someone who’s not really trying or not an expert. Mist-v2 is not a perfect solution, but it would be certainly better than nothing.”</b>
</div>
<p class="content-title">What is Mist</p>
<div class="content-desc">
<div class="content-desc">
Mist is a powerful image preprocessing tool designed for the purpose of protecting the style and content of
images from being mimicked by common AI-for-Art applications, including LoRA, SDEdit and DreamBooth functions in Stable diffusion, Scenario.gg, etc. By adding watermarks to the images, Mist renders them unrecognizable and inimitable for the
models employed by AI-for-Art applications. Attempts by AI-for-Art applications to mimic these Misted images
will be ineffective, and the output image of such mimicry will be scrambled and unusable as artwork.
</div>
<!-- 中间箭头内容区 -->
<div class="c_flex arrow_content">
<!-- <div class="arrow_item_img">
<img src="./image/source/source_vangogh.png" alt="">
</div> -->
<div class="arrow_item_img">
<!-- <img src="./image/source/source_vangogh.png" alt=""> -->
<img src="./image/mist_v2/clean.png" alt="">
</div>
<div class="arrow-item">
<p><b>Mist</b></p>
<p><img class="right_arrow" src="./image/right_arrow.png" alt=""></p>
</div>
<!-- <div class="arrow_item_img">
<img src="./image/source/mist_vangogh.png" alt="">
</div> -->
<div class="arrow_item_img">
<!-- <img src="./image/source/mist_vangogh.png" alt=""> -->
<img src="./image/mist_v2/adv.png" alt="">
</div>
<div class="arrow-item">
<p> <b>Mimic</b></p>
<p><img class="right_arrow" src="./image/right_arrow.png" alt=""></p>
</div>
<!-- <div class="arrow_item_img">
<img src="./image/ti/mist/3.png" alt="">
</div> -->
<div class="arrow_item_img">
<!-- <img src="./image/ti/mist/3.png" alt=""> -->
<img src="./image/mist_v2/gen_adv.jpg" alt="">
</div>
</div>
<!-- -->
<div class="content-desc">
We are committed to developing and maintaining Mist in a long term and continuously enhancing its function,
and to this end, we have open-sourced Mist on GitHub. We hope to foster a vibrant community for developers and
users on Discord to collaboratively improve the performance of Mist. We welcome both user responses and
technical contributions. Join our community and this exciting endeavor now!
</div>
<div class="c_center">
<a class="path-item active" href="https://discord.gg/DM5qxSW9bT">Join our community on Discord</a>
</div>
<br>
<br>
<div class="content-desc">
<b>News & Updates:</b>
<br>
<div class="content-desc">
[2023.12] Mist V2 is officially released as <b>the first</b> image preprocessing tool that has been systematically verified to be <b>effective under LoRA</b>. Furthermore, it significantly enhances its capabilities against various AI-for-Art applications and reduces the computational resource consumption.
</div>
<div class="content-desc">
[2023.04] Mist is also accepted <b>by ICML 2023 as Oral Presentation</b>! See <a
href="https://arxiv.org/abs/2302.04578" target="_blank" title="click to navigate to our paper">our paper</a> for more details.
</div>
</div>
<br>
<br>
</div>
<div class="mist-content">
<!-- Advantages -->
<div class="container">
<p class="content-title">Advantages & Examples</p>
<div class="content-desc">
Mist is effective against a variety of AI-for-Art applications and is highly robust to noise purification, and takes less time and less computational resource to function. The following examples show that Mist provides the most advanced protective watermarking for images that can effectively resist various noise purification methods such as cropping, resizing and super resolution. In addition, the process of adding a watermark to an image by Mist takes only a few minutes.</div>
<!-- 主内容区 -->
<div>
<p class="sub-content-title">Effectiveness <span class="operation"> <i class="up_active"></i>
<b>close</b></span></p>
<div class="content-desc">
Mist is effective against various AI-for-Art applications, including LoRA (implemented in <a
href="https://huggingface.co/docs/diffusers/training" target="_blank"
title="click to navigate to diffuser">Diffusers</a>), SDEdit (implemented in <a
href="https://github.com/AUTOMATIC1111/stable-diffusion-webui" target="_blank"
title="click to navigate to stable-diffusion-webui">stable-diffusion-webui</a>), DreamBooth (implemented
in <a href="https://huggingface.co/docs/diffusers/training/dreambooth" target="_blank"
title="click to navigate to diffuser">Diffusers</a>), <a href="https://app.scenario.gg" target="_blank"
title="click to navigate to scenario.gg">Scenario.gg</a>.
<br>
Taking the two most typical AI-for-Art applications LoRA and SDEdit as examples, the watermarks added by Mist interfere greatly with the results generated.
</div>
<div class='effect-show'>
<p class="effect-content-title">LoRA </p>
<div class="advantages_row" id="advantages_row_first">
<div>
<p><img src="./image/mist_v2/ori_sample.png" alt=""></p>
<p>Source image</p>
</div>
<div>
<p><img src="./image/mist_v2/clean_t2i.jpg" alt=""></p>
<p>Image generation from <br>source image</p>
</div>
<div>
<p><img src="./image/mist_v2/mist_4.png" alt=""></p>
<p>Misted image</p>
</div>
<div>
<p><img src="./image/mist_v2/misted_t2i.jpg" alt=""></p>
<p>Image generation from <br>Misted image</p>
</div>
</div>
</div>
<div class='effect-show'>
<p class="effect-content-title">SDEdit</p>
<div class="advantages_row" id="advantages_row_first">
<div>
<p><img src="./image/mist_v2/ori_sample_2.png" alt=""></p>
<p>Source image</p>
</div>
<div>
<p><img src="./image/mist_v2/clean_i2i.jpg" alt=""></p>
<p>Image generation from <br>source image</p>
</div>
<div>
<p><img src="./image/mist_v2/mist_4_2.png" alt=""></p>
<p>Misted image</p>
</div>
<div>
<p><img src="./image/mist_v2/misted_i2i.jpg" alt=""></p>
<p>Image generation from <br>Misted image</p>
</div>
</div>
</div>
</div>
<div class="c_center line_cent">
<p class="line"></p>
</div>
<!-- 主内容区二 -->
<div>
<p class="sub-content-title">Robustness under image transformation <span class="operation"> <i
class="up_active"></i> <b>close</b>
<div class="content-desc">
Mist is robust to image transformation. We compare Mist's performance under various defenses such as Gaussian noise, JPEG compression, resizing and super-solution. It is observed that Mist maintains a high level of performance after input transformation.
<!-- Mist is robust to image transformation. We compare the performance of Gaussian noise, <a
href="https://glaze.cs.uchicago.edu" target="_blank" title="click to navigate to glaze"> Glaze</a>
(with very high intensity and medium render quality) and Mist after cropping and resizing. Mist is the
only method remains effective after input transformation. -->
</div>
</span></p>
<div class='effect-show'>
<p class="effect-content-title">LoRA </p>
<div class="advantages_row " id="advantages_row_first">
<div>
<p><img src="./image/mist_v2/gaussian_t2i.jpg" alt=""></p>
<p>Image generation from Misted image under Gaussian noise</p>
</div>
<div>
<p><img src="./image/mist_v2/jpeg_t2i.jpg" alt=""></p>
<p>Image generation from Misted image under JPEG compression</p>
</div>
<div>
<p><img src="./image/mist_v2/resize_t2i.jpg" alt=""></p>
<p>Image generation from Misted image under resizing</p>
</div>
<div>
<p><img src="./image/mist_v2/sr_t2i.jpg" alt=""></p>
<p>Image generation from Misted image under super resolution</p>
</div>
</div>
</div>
<div class='effect-show'>
<p class="effect-content-title">SDEdit </p>
<div class="advantages_row " id="advantages_row_first">
<div>
<p><img src="./image/mist_v2/gaussian_i2i.jpg" alt=""></p>
<p>Image generation from Misted image under Gaussian noise</p>
</div>
<div>
<p><img src="./image/mist_v2/jpeg_i2i.jpg" alt=""></p>
<p>Image generation from Misted image under JPEG compression</p>
</div>
<div>
<p><img src="./image/mist_v2/resize_i2i.jpg" alt=""></p>
<p>Image generation from Misted image under resizing</p>
</div>
<div>
<p><img src="./image/mist_v2/sr_i2i.jpg" alt=""></p>
<p>Image generation from Misted image under super resolution</p>
</div>
</div>
</div>
</div>
<div class="c_center line_cent">
<p class="line"></p>
</div>
<!-- 主内容区三 -->
<div>
<p class="sub-content-title">Time efficiency <span class="operation"> <i class="up_active"></i>
<b>close</b></span></p>
<div class="content-desc">
<!-- The watermarking process is fast. With the default parameters (100 steps, 512 output size), Mist can process
a image within 3 minutes. -->
Mist supports both CPU and GPU. Adding a Mist watermark to a single image using CPU takes approximately one hour. Using GPU, Mist can run with only <b>6GB of VRAM</b> and complete the processing of an image in just <b>5 minutes</b> on average.
</div>
<div class="c_center line_cent">
<p class="line"></p>
</div>
<!-- <div class="third_content">
<div>
<p><img src="./image/speed.gif" alt=""></p>
<p>Example: Mist adds watermarks to Monet's painting within 3 minutes. (GPU: RTX A4000)</p>
</div>
<br>
<br>
<br>
</div> -->
</div>
<div>
<p class="sub-content-title"> User cases <span class="operation"> <i class="up_active"></i> <b>close</b>
<div class="content-desc">
The following are showcases of the results when users employ Mist to protect their artworks.
</div>
</span></p>
<div class='effect-show'>
<p class="effect-content-title">@桑德兰的等待</p>
<div class="advantages_row" id="advantages_row_first">
<div>
<p><img src="./image/user2/ori_sample.png" alt=""></p>
<p>Source image</p>
</div>
<div>
<p><img src="./image/user2/clean_t2i.jpg" alt=""></p>
<p>Image generation from <br>source image</p>
</div>
<div>
<p><img src="./image/user2/mist_4.png" alt=""></p>
<p>Misted image</p>
</div>
<div>
<p><img src="./image/user2/misted_t2i.jpg" alt=""></p>
<p>Image generation from <br>Misted image</p>
</div>
</div>
<div class="advantages_row" id="advantages_row_first">
<div>
<p><img src="./image/user2_2/ori_sample.png" alt=""></p>
<p>Source image</p>
</div>
<div>
<p><img src="./image/user2_2/clean_t2i.jpg" alt=""></p>
<p>Image generation from <br>source image</p>
</div>
<div>
<p><img src="./image/user2_2/mist_4.png" alt=""></p>
<p>Misted image</p>
</div>
<div>
<p><img src="./image/user2_2/misted_t2i.jpg" alt=""></p>
<p>Image generation from <br>Misted image</p>
</div>
</div>
</div>
<div class='effect-show'>
<p class="effect-content-title">@Anonymous Artist </p>
<div class="advantages_row" id="advantages_row_first">
<div>
<p><img src="./image/user1/ori_sample.png" alt=""></p>
<p>Source image</p>
</div>
<div>
<p><img src="./image/user1/clean_t2i.jpg" alt=""></p>
<p>Image generation from <br>source image</p>
</div>
<div>
<p><img src="./image/user1/mist_4.png" alt=""></p>
<p>Misted image</p>
</div>
<div>
<p><img src="./image/user1/misted_t2i.jpg" alt=""></p>
<p>Image generation from <br>Misted image</p>
</div>
</div>
<div class="advantages_row" id="advantages_row_first">
<div>
<p><img src="./image/user1_2/ori_sample.png" alt=""></p>
<p>Source image</p>
</div>
<div>
<p><img src="./image/user1_2/clean_t2i.jpg" alt=""></p>
<p>Image generation from <br>source image</p>
</div>
<div>
<p><img src="./image/user1_2/mist_4.png" alt=""></p>
<p>Misted image</p>
</div>
<div>
<p><img src="./image/user1_2/misted_t2i.jpg" alt=""></p>
<p>Image generation from <br>Misted image</p>
</div>
</div>
</div>
<!-- <div class="c_center line_cent">
<p class="line"></p>
</div> -->
<!-- 主内容区三 -->
</div>
</div>
<!-- end -->
</div>
<!-- Download -->
<div class="download-content box" id="Download">
<div class="container">
<p class="content-title">Download</p>
<div class="content-desc">
Mist is compatible with both Linux and Windows operating systems. For local deployment, users can refer to our <a
href="https://github.com/mist-project/mist-v2/blob/main/docs/Handbook-Free-version.md" target="_blank" title="click to quick start">guidance </a> for quick start. Windows users can download the Mist launcher from the provided Google Drive or Baidu Netdisk link (Extraction Code: m4nx) and install it for use. For Linux users, we recommend obtaining Mist from our open-source code on GitHub and referring to the Readme file for installation and usage instructions.
Additionally, a <a
href="https://colab.research.google.com/drive/1k5tLNsWTTAkOlkl5d9llf93bJ6csvMuZ?usp=sharing" target="_blank" title="click to navigate to notebook">Colab Notebook </a> is available for users with MacOS systems or those who do not possess proper Nvidia GPUs. </div>
<div class="down-operation">
<a class="path-item" href="https://drive.google.com/drive/folders/1vg8oK2BUOla5adaJcFYx5QMq0-MoP8kk?usp=drive_link">Google Drive</a>
<a class="path-item" href="https://pan.baidu.com/s/1fZP4nFxlmmr0DiE54DJ7HQ">Baidu Netdisk</a>
<a class="path-item" href="https://github.com/mist-project/mist-v2">GitHub</a>
</div>
</div>
</div>
<!-- Validate -->
<!-- <div class="download-content box odd-bj">
<div class="container">
<p class="content-title">Validate</p>
<div class="content-desc">
Users can validate the effectiveness of Mist in two steps. First, add watermarks to images using Mist, Second,
submit these Misted images to AI-for-Art applications, which will synthesize new images using their mimicry
functions, for example, textual inversion and Dreambooth. Users can verify the protection strength of Mist by
comparing the extent to which images are mimicked by AI-for-Art applications before and after being Misted.
Detailed guidelines for the validation process can be found in our documentation.
</div>
<div class="c_center">
<a class="path-item" href="https://mist-documentation.readthedocs.io/en/latest/content/validation.html">See
detailed guidelines
</a>
</div>
</div>
</div> -->
<div class="download-content box odd-bj">
<div class="container">
<p class="content-title">Our vision</p>
<div class="content-desc">
There is no doubt that the AIGC applications will revolutionize the production and consumption patterns of all mankind. However, its impact on the established social pattern and the distribution of interests should not be overlooked. We recognize that technological innovation is just as important as the improvement of social systems. While it often takes time for new systems to develop, the attention and reflection should be forward-looking.<br><br>
Mist and our future projects aim to engage in a form of social practice in a technical way, exploring the possibilities of integrating relevant technologies into the society in a more sustainable and gentle manner. In the case of Mist, we hope to draw attention to the challenges that AI-for-Art apps pose to the established copyright system, their impact on the commercial and aesthetic value of the artist community, and in essence, how we perceive and incentivize human creativity. We’re also actively working on additional projects aimed at addressing ethical, copyright, and trustworthiness concerns arising from AIGC technology.<br><br>
We warmly welcome all developers, researchers and practitioners who are interested in this vision to contact us, and look forward to exploring the current technological bottlenecks and unresolved potential societal issues together. Reach out if you have:<br>
- Ethical concerns about AIGC to be resolved.<br>
- Technology solutions or ideas around trustworthy AIGC.<br>
- Thoughts beyond tech – your observation on industry practice and AIGC’s social impact.
<br><br>
</div>
</div>
</div>
<!-- FAQ -->
<div class="download-content box" id="Faq">
<div class="container">
<!-- <p class="content-title">FAQ</p><span class="operation"> <i class="up_active"></i> <b>close</b></span></p> -->
<p class="sub-content-title" , id="sub-content-title-bigger">FAQ <span class="operation"> <i
class="up_active"></i> <b>close</b></span></p>
<div class="content-desc" id='faq-content'>
<div>
<b>Q: </b>Compared to Mist V1 and other similar products, what are the main advantages of Mist V2?
</div>
<div>
<b>A: </b>In the months following the release of Mist V1, we identified two main issues in practice. First, LoRA gradually became the primary method for AI to learn artistic styles, but existing watermark tools were unable to address this problem and lacked the capability to protect against LoRA. Second, existing watermark tools required significant computational resources, often beyond the capacity of artists’ computers. In comparison to existing watermark tools, Mist V2 has made significant advancements in addressing these two issues. Mist V2 is the first watermark tool systematically verified to have <b>protective functions against LoRA</b>. Besides, the computational resource consumption required by Mist is also significantly optimized, allowing it to run on GPUs and CPUs with a minimum of 6GB of VRAM.
</div><br>
<div>
<b>Q: </b>How does Mist V2 protect against AI-for-Art applications like LoRA and SDEdit?
</div>
<div>
<b>A: </b> Mist V2 mimics the training process of AI-for-Art applications such as LoRA and SDEdit on artistic works. It strategically introduces misleading noise into the watermark to confuse AIGC models between the actual content of the artwork and the chaotic patterns embedded in the watermark. At higher intensities, the model may perceive the chaotic patterns as part of the artistic style, resulting in images with the chaotic patterns. At lower intensities, the model struggles to accurately learn the artistic style, reducing the similarity between the output images and the artworks used for training and the diversity of the output images.
</div>
<br>
<div>
<b>Q: </b>Will Mist V2 be bypassed?
</div>
<div>
<b>A: </b>Currently, there are no simple, lossless bypassing tools available. Any tool that significant undermines the protective effect of Mist V2 would also compromise the quality of images, thereby equally affecting the output quality of artistic style imitation. Nevertheless, considering the rapid pace of technological advancements and iterations, we cannot predict whether new artistic style imitation techniques and models might bypass the protection of Mist V2. However, similar to this update, we are committed to continuously updating and maintaining Mist, addressing newly emerging issues over the long term.
</div>
<br>
<div>
<b>Q: </b>If I use an attack with intensity lower than the recommended level to make the watermark less noticeable, will Mist still be effective?
</div>
<div>
<b>A: </b> The recommended intensity of Mist is designed to ensure comprehensive performance in various imitation scenarios. If a user decides to decrease the watermark intensity, Mist can still provide protection through a relatively diminished performance. Additionally, Mist allows users to choose different protection modes for various imitation situations, allowing them to adjust the watermark intensity to better suit their needs. Users also have the flexibility to customize Mist’s intensity. For a detailed guide on selecting the appropriate mode, please refer to our documentation.
</div>
<br>
<div>
<b>Q: </b>How does Mist V2 protect against AI-for-Art applications like LoRA and SDEdit?
</div>
<div>
<b>A: </b> The Mist series watermark tools will <b>permanently be free and open-source</b> . As technical developers, one of the most impactful ways to support us is by starring our projects on GitHub <b>(it's really important to us!)</b>. Likewise, we warmly welcome users and developers to provide feedback and report any issues with Mist through our Discord community or other contact methods, helping us further refine the technology.<br>
We also greatly appreciate your expression of interest, praise, and support through social media. In addition to releasing more AIGC-related technical projects, we plan to introduce and inform the public about the technical principles, business practices, and potential societal issues related to AIGC through social media in the future. We hope to promote a more comprehensive and in-depth understanding of AIGC and related technologies through sharing. Follow us to ride the wave of technological change together!
</div>
</div>
</div>
<!-- <div class="download-content box odd-bj">
<div class="container">
<p class="content-title">About us</p>
<div class="content-desc">
Mist is lead by Psyker Group, a group of developers and industry practitioners committed to work on technology projects addressing trustworthy, ethical and regulatory issues arising from AIGC technology.
<br>Team member of Psyker Group: <br>
Caradryan Liang, Nicholas Wu, Chris Xue, Melo Yang
<br>
<br>Main contributors:<br>
Psyker Group, BoyangZheng, Alice203 and MOSS星辉
<br> <br>
<P>Yongwen Su at UCB also contributes to the development of Mist. We also thanks Jiahao Wu, Yi (David) Zhao, Jiahao Wu and Yi Zhao for their advice in software development. We would also like to express our gratitude to 苹果, GUUUU, 原野, 蚕蛹子 and BASS for their support of our project. </P>
</div>
</div>
</div>
<div class="download-content box">
<div class="container">
<p class="content-title">Contact us</p>
<div class="content-desc">
We value user and developer feedback. Join our Discord community to share thoughts, ideas, and suggestions for Mist's improvement. Our team is available on Discord to address any Mist-related issues.<br>
Updates on Mist will be posted on @Psyker_ (Weibo) and @psyker_202304 (Twitter).<br><br>
You may also contact us via QQ group chat: 189980587 or email: [email protected].
</div>
</div>
</div> -->
<div class="download-content box odd-bj" id="Contact">
<div class="container">
<p class="content-title">Contact us </p>
<div class="contact_item c_flex">
<div>
Mist is led by Psyker Group, a group of developers and industry practitioners committed to work on technology projects addressing trustworthy, ethical and regulatory issues arising from AIGC tech
nology.
<br>Team member of Psyker Group: <br>
Caradryan Liang, Nicholas Wu, Chris Xue, Melo Yang
<br>
<br>Main developers of Mist:<br>
Psyker Group, Boyang Zheng, MOSS星辉
<br> <br>
<P>We extend our special thanks to Alice2O3 for the exceptional contribution in developing the launcher for Mist.</P>
<P>Yongwen Su at UCB also contributes to the development of Mist. We also thanks Jiahao Wu, Yi (David) Zhao, Jiahao Wu and Yi Zhao for their advice in software development. We would also like to express our gratitude to 苹果, GUUUU, 原野, 蚕蛹子 and BASS for their support of our project. </P>
</div>
<div>
We value user and developer feedback. Join our Discord community to share thoughts, ideas, and suggestions for Mist's improvement. Our team is available on Discord to address Mist-related issues.<br>
Updates on Mist will be posted on @Psyker_ (Weibo) and @psyker_202304 (Twitter).<br><br>
You may also contact us via QQ group chat: 189980587 or email: [email protected].
</div>
</div>
</div>
</div>
</div>
<script>
$('body .operation').on('click', function () {
var thisTxt = $(this).find('b');
if (thisTxt.text() == 'close') {
$(this).find('b').text('open');
$(this).find('i').removeClass('up_active').addClass('is_active');
$(this).parent().parent().find('.content-desc').animate({
height: 'hide',
opacity: 'hide'
}, 'slow');
$(this).parent().parent().find('.advantages_row').animate({
height: 'hide',
opacity: 'hide'
}, 'slow');
$(this).parent().parent().find('.effect-content-title').animate({
height: 'hide',
opacity: 'hide'
}, 'medium');
$(this).parent().parent().find('.third_content').animate({
height: 'hide',
opacity: 'hide'
}, 'slow');
} else {
$(this).find('b').text('close');
$(this).find('i').removeClass('is_active').addClass('up_active');
$(this).parent().parent().find('.content-desc').animate({
height: 'show',
opacity: 'show'
}, 'slow');
$(this).parent().parent().find('.effect-content-title').animate({
height: 'show',
opacity: 'show'
}, 'slow');
$(this).parent().parent().find('.advantages_row').animate({
height: 'show',
opacity: 'show'
}, 'slow');
$(this).parent().parent().find('.third_content').animate({
height: 'show',
opacity: 'show'
}, 'slow');
}
})
// HREF LINKS
$('a[href*="#"]').click(function (event) {
if (
location.pathname.replace(/^\//, '') == this.pathname.replace(/^\//, '') && location.hostname == this
.hostname) {
var target = $(this.hash);
target = target.length ? target : $('[name=' + this.hash.slice(1) + ']');
if (target.length) {
event.preventDefault();
$('html, body').animate({
scrollTop: target.offset().top - 74
}, 1000);
}
}
});
</script>
</body>
</html>