-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathploter.py
237 lines (196 loc) · 6.72 KB
/
ploter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import sqlite3
import matplotlib
import matplotlib.pyplot as plt
from pandas.core.frame import DataFrame
import pandas as pd
import json
from loguru import logger
# import plotly.graph_objects as go
# pd.options.plotting.backend = 'plotly'
def connection_to_data(file) -> object:
"""connection to sqlite database in given location
Args:
file (str): file location (Absolute or relative path) This file should be present in database folder only
Returns:
object: connection object
"""
return sqlite3.connect(file)
def extract_data(use, file, command) -> tuple:
"""extract query from file and if command is given return command
Args:
use ([type]): [description]
file ([type]): [description]
command ([type]): [description]
Returns:
tuple: [description]
"""
if file is not None:
return query_from_file(file)
if command is not None:
# use.execute(command)
# return use.fetchall()
return command
coin = input('enter coin name: ')
return """select time_fetch,present,signal,change from parameter where coin = '{}' """.format(
coin
)
def query_from_file(file: str) -> list or str:
"""if query should be taken from file this function is called
Args:
file (str): file path(Absolute or relative path)
Returns:
list or str: list of queries or a single query string
"""
with open(file, 'r') as f:
query = f.read()
query.replace("\n", " ")
if int(query.count(";")) > 1:
queries = []
for _ in range(int(query.count(";"))):
queries.append(query[:query.index(';')])
query = query[query.index(';')+1:]
return queries
return query
# if type(queries) == list:
# values = []
# for query in queries:
# use.execute(query)
# values.append(use.fetchall())
# return values
# use.execute(query)
# return use.fetchall()
def parser(data: list) -> dict:
"""parses the data from query returned data to time values and signal list
Args:
data (list): data from query
Returns:
dict: a dictionary containing time values and signal values
"""
data_parsed = {}
if type(data[0]) == list:
for i in range(len(data)):
time = []
value = []
signal = []
# time1=[]
for j in range(len(data[i])):
time.append(str(data[i][j][0]))
value.append(data[i][j][1])
signal.append(data[i][j][2])
data_parsed[i] = [time, value, signal]
else:
time = []
value = []
signal = []
for datum in data:
time.append(str(datum[0]))
value.append(datum[1])
signal.append(datum[2])
# time1.append([datetime.strptime(d, '%Y-%m-%d %H:%M:%S') for d in time])
data_parsed[0] = [time, value, signal]
return data_parsed
def plot_data(values):
time = []
value = []
signal = []
for i in range(len(values)):
# time, value, signal = values[i]
if len(values[i][0]) == 0:
continue
# plt.plot(time, value)
# plt.xlabel('Time')
# plt.ylabel('Value')
# plt.title('Signal')
time.append(values[i][0])
value.append(values[i][1])
signal.append(values[i][2])
plt.plot(time[0], value[0])
plt.plot(time[1], value[1])
plt.show()
# for i in range(len(values)):
# time, value, signal=values[i]
# if len(values[i][0]) ==0:
# continue
# a=pe.scatter(values)
# a.show()
pass
def pandas_format(conn: sqlite3.Connection, queries: str or list) -> DataFrame:
if type(queries) == list:
df = []
for i in range(len(queries)):
try:
df.append(pd.read_sql_query(queries[i], conn))
except:
continue
return df
elif type(queries) == str:
df = pd.read_sql_query(queries, conn)
return df
def simulator_plot(values):
for market_pairs in values.keys():
plt.figure(str(market_pairs))
plt.xlabel('Time')
plt.ylabel('Price')
for dates_freq in values[market_pairs].keys():
for parameters in values[market_pairs][dates_freq].keys():
time=pd.to_datetime(values[market_pairs][dates_freq][parameters][0],unit='ms')
plt.plot(time, values[market_pairs][dates_freq][parameters][1],label=str(dates_freq)+" "+str(parameters))
plt.gcf().autofmt_xdate()
myFmt = matplotlib.dates.DateFormatter('%D:%H:%M')
plt.gca().xaxis.set_major_formatter(myFmt)
plt.legend(loc='upper left')
plt.show()
def pandas_plot(df: DataFrame or list):
if type(df) == list:
for i in range(len(df)):
print(df[i].head())
df[i]['time_fetch'] = pd.to_datetime(
df[i]['time_fetch'], unit='ms')
# df[i].plot(x='time_fetch', y='present')
print(df[i]['time_fetch'])
plt.plot(df[i]['time_fetch'], df[i]['present'])
plt.show()
elif type(df) == DataFrame:
df.plot()
df.show()
def plot_type() -> str or None:
type = input(
"Do you want to : \n 1)use commands from file\n 2)Enter commands\n 3)Use default command")
if int(type) == 1:
return input("FILE absolute or relative path : ")
elif int(type) == 2:
return input("Enter the query string : ")
elif int(type) == 3:
return None
def csv_data(filename: str):
df = pd.read_csv(filename, header=None)
print(df.head(10))
# df[4] = pd.to_datetime(
# df[4], unit='ms')
# print(df.head(10))
# df=DataFrame(df)
# # df=df.reindex(['count','price','change','volume','timestamp','maker','buyer'],axis=1)
# print(df.head(10))
# df=DataFrame("timestamp":df[4],"price":df[1])
# df.plot(x=df['timestamp'],y=df['price'])
# # df.show()
# # df.plot()
# plt.show()
def database_location(path_of_file=None) -> str:
try:
with open('config.json', 'r') as value:
values = json.load(value)
path_of_file = values['inputs']['plotter_database']
except:
logger.error("Could not load config.json")
if path_of_file is None:
path_of_file = input("database location(Absolute or relative path) : ")
return path_of_file
def main():
# csv_data("database/ETHUSD.csv")
path_of_file = database_location()
conn = connection_to_data("database/"+path_of_file)
queries = extract_data(conn, 'plotter.sql', None)
df = pandas_format(conn, queries)
pandas_plot(df)
# main()