forked from myazi/myLearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcart.cpp
364 lines (355 loc) · 9.05 KB
/
cart.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/***
决策树,ID3,C4.5,树回归
考虑
1信息增益,信息增益率,最小均方差
2属性类型(double,string)连续值和缺损值
3剪枝
**/
#include <iostream>
#include <stdlib.h>
#include <string>
#include <math.h>
#include <fstream>
#include <sstream>
#define MAX_SIZE_OF_TRAINING_SET 1000
#define ATTR_NUM 3
#define MAX 1024000
#define MIN 0.0000001
using namespace std;
struct data
{
int id;
double attr_double[ATTR_NUM];//用于数值型属性
data *next;
};
struct twoSubData
{
data *left;
data *right;
};
struct split
{
int bestIndex;//表示最好的分类属性,当非叶子节点时,即表示分裂属性下标,否则为-1,表示为叶子节点标记
double value;//若为分裂节点,则表示分裂阈值,否则为叶子节点,用来记录叶子节点的均值
};
typedef struct bitnode
{
struct bitnode *left;//小于等于阈值的左子树
struct bitnode *right;//大于阈值的右子树
int leafType;//叶子节点类型.0:值,1:模型
int feature;//只有非叶子节点才有分裂属性
double value;//叶子节点为值型,非叶子节点为阈值
int modle[ATTR_NUM];//叶子节点为model型
struct data *data;//可用于记录data的指针头
int len;//记录该结点子集的长度
}bitnode,*bitree;
twoSubData binSplitDataSet(data *dataSet,int axis,double value)
{
twoSubData twosubdata;
twosubdata.left=new data;
twosubdata.right=new data;
twosubdata.left->next=NULL;
twosubdata.right->next=NULL;
data *left=twosubdata.left;//=(data *)malloc(sizeof(data)*MAX_SIZE_OF_TRAINING_SET);
data *right=twosubdata.right;
data *p;
data *datatmp;
p=dataSet->next;
int i,j,k;
for(i=0;p!=NULL;i++)
{
if(p->attr_double[axis]<=value)
{
datatmp=new data;
datatmp->next=NULL;
datatmp->id=p->id;
for(j=0;j<ATTR_NUM;j++)
datatmp->attr_double[j]=p->attr_double[j];
left->next=datatmp;
left=left->next;
}
else
{
datatmp=new data;
datatmp->next=NULL;
datatmp->id=p->id;
for(j=0;j<ATTR_NUM;j++)
datatmp->attr_double[j]=p->attr_double[j];
right->next=datatmp;
right=right->next;
}
p=p->next;
}
return twosubdata;
}
double mean(data *dataSet)
{
int i;
double meanvalue=0;
double meanErr=0;
data *p;
p=dataSet->next;
for(i=0;p!=NULL;i++)
{
meanvalue+=p->attr_double[ATTR_NUM-1];
p=p->next;
}
meanvalue/=(i);//这里注意i即表示长度,因为i是从0开始算的,所以最后的加1不能减去
return meanvalue;
}
double MeanErr(data *dataSet)
{
int i;
double meanvalue=0;
double meanErr=0;
data *p;
meanvalue=mean(dataSet);
p=dataSet->next;
for(i=0;p!=NULL;i++)
{
meanErr+=(p->attr_double[ATTR_NUM-1]-meanvalue)*(p->attr_double[ATTR_NUM-1]-meanvalue);
p=p->next;
}
meanErr=sqrt(meanErr/(i));//这里注意i即表示长度,因为i是从0开始算的,所以最后的加1不能减去
//cout<<"meanErr="<<meanErr<<endl;
return meanErr;
}
/*double linearSolve(data *dataSet)
{
int i,j;
data *p;
p=dataSet->next;
while(p!=NULL)
{
p
p=p->next;
}
}*/
split chooseBestSplit(data *dataSet,int leafType,double minErr,int minLen)
{
int signvalue=1;
twoSubData twosubdata;
data *p;
data *left;
data *right;
split sp;
int len;
int i,j;
double oldMeanErr=MeanErr(dataSet);
double bestMeanErr=MAX;
double newMeanErr;
p=dataSet->next;
double value=p->attr_double[ATTR_NUM-1];
for(i=0;p!=NULL;i++)
{
signvalue=0;
if(p->attr_double[ATTR_NUM-1]!=value)
{
signvalue=0;
}
len++;
p=p->next;
}
if(signvalue||len==1)
{
cout<<"signvalue+len"<<endl;
sp.bestIndex=-1;
sp.value=mean(dataSet);
return sp;
}
sp.bestIndex=0;
sp.value=0;
for(i=0;i<ATTR_NUM-1;i++)
{
p=dataSet->next;
for(j=0;p!=NULL;j++)
{
twosubdata=binSplitDataSet(dataSet,i,p->attr_double[i]);
left=twosubdata.left->next;
right=twosubdata.right->next;
len=0;//len记得在进入下次循环是清0
while(left!=NULL&&right!=NULL)
{
left=left->next;
right=right->next;
len++;
}
//cout<<"len===="<<len<<endl;
if(len<minLen)
{
p=p->next;//提前结束当前循环之前还得把指针指向下一个
continue;
}
newMeanErr=MeanErr(twosubdata.left)+MeanErr(twosubdata.right);
//cout<<"id="<<j<<" newMeanErr="<<newMeanErr<<endl;
if(newMeanErr<bestMeanErr)
{
sp.bestIndex=i;
sp.value=p->attr_double[i];
bestMeanErr=newMeanErr;
}
p=p->next;
}
}
//cout<<"value="<<sp.value<<" index="<<sp.bestIndex<<endl;
if(oldMeanErr-bestMeanErr<minErr||oldMeanErr-bestMeanErr<MIN)
{
sp.bestIndex=-1;
sp.value=mean(dataSet);
//cout<<"minErr"<<endl;
return sp;
}
//cout<<sp.bestIndex<<"&"<<sp.value<<" ";
//cout<<oldMeanErr<<"&"<<bestMeanErr<<endl;
return sp;
}
int createBinTree(bitree &t,data *dataSet)
{
data *p=dataSet->next;
if(!(t=(bitnode *)malloc(sizeof(bitnode)))) exit(-1);
int len=0;
while(p!=NULL)
{
len++;
//cout<<"data: "<<p->attr_double[0]<<" "<<p->attr_double[1]<<" "<<p->attr_double[2]<<endl;
p=p->next;
}
cout<<"len="<<len<<endl;;
split sp=chooseBestSplit(dataSet,0,0.01,10);
//cout<<"index="<<sp.bestIndex<<endl;
t->feature=sp.bestIndex;
t->value=sp.value;
t->data=dataSet;
t->len=len;
if(t->feature==-1)
{
t->left=NULL;
t->right=NULL;
t->data=dataSet;
t->len=len;
cout<<"feature="<<t->feature<<" value="<<t->value<<endl;
return 0;
}
else
{
cout<<"feature="<<t->feature<<" value="<<t->value<<endl;
twoSubData twosubdata=binSplitDataSet(dataSet,sp.bestIndex,sp.value);
createBinTree((t->left),twosubdata.left);
createBinTree((t->right),twosubdata.right);
}
return 0;
}
void loadData(data *dataSet,int trainOrtest)
{
ifstream infile;
string tmpstrline;
string tmpstr;
data *p;
p=dataSet;
data *datatmp;
infile.open("data\\cart.txt",ios::in);
int i=0,j=0,yblen=0,fetlen=0;
while(!infile.eof()&&i<MAX_SIZE_OF_TRAINING_SET)
{
getline(infile,tmpstrline,'\n');//读取文件中一行的数据,保存为string类型
stringstream input(tmpstrline);
if(tmpstrline!="\0"&&i%2==trainOrtest)////由于读取文件结束符同样会继续该操作
{
datatmp=new data;
datatmp->id=i;
datatmp->next=NULL;
j=0;
while(input>>datatmp->attr_double[j])
{
j++;
fetlen=j;
}
p->next=datatmp;
p=p->next;
}
i++;
}
//检测数据加载是否正确
/*yblen=i;
p=dataSet->next;
for(i=0; p!=NULL; i++)
{
for(j=0; j<fetlen; j++)
{
cout<<p->attr_double[j]<<" ";
}
p=p->next;
cout<<endl;
}*/
}
int preorder(bitree &t,data *dataSet)//递归先序遍历二叉树
{
data *p;
if(t!=NULL)
{
cout<<t->feature<<" "<<t->value<<" len="<<t->len<<endl;
p=dataSet->next;
if(t->left!=NULL)//这里之所以不再下一次递归时检测t->left是否为NULL,是因为递归函数中另外一个参数用到了left->data
//常规的先序遍历一般在下一次递归为NULL返回
preorder(t->left,t->left->data);
if(t->right!=NULL)
preorder(t->right,t->right->data);
}
return 0;
}
int prune(bitree &t,data *testData)
{
data *p=testData;
int len=0;
while(p!=NULL)
{
p=p->next;
len++;
}
if(len==0)
return 0;
if(t==NULL)//检测子树是否为NULL,不然后面的操作执行不了
return 0;
if(t->left->feature>-1||t->right->feature>-1)
{
twoSubData twosubdata=binSplitDataSet(testData,t->feature,t->value);
if(t->left->feature>-1)
prune(t->left,twosubdata.left);
if(t->right->feature>-1)
prune(t->right,twosubdata.right);
}
else
{
twoSubData twosubdata=binSplitDataSet(testData,t->feature,t->value);
double errortwo=MeanErr(twosubdata.left)+MeanErr(twosubdata.right);
double errorone=MeanErr(testData);
if(errorone<errortwo)
{
cout<<"merge"<<endl;
t->left=NULL;
t->right=NULL;
t->feature=-1;
t->value=mean(testData);
return 0;
}
}
}
int main()
{
data *dataSet=new data;
dataSet->next=NULL;
loadData(dataSet,0);
//MeanErr(dataSet);
//chooseBestSplit(dataSet,0,0,1);
bitree t;
if(!(t=(bitree)malloc(sizeof(bitnode)))) exit(-1);
//t=NULL;
createBinTree(t,dataSet);
cout<<t->feature<<endl;
preorder(t,dataSet);
data *testData=new data;
loadData(testData,1);
prune(t,testData);
preorder(t,dataSet);
return 0;
}