-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsbt.cpp
180 lines (165 loc) · 3.99 KB
/
sbt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
const int N = 210005;
const int INF=0x7FFFFFFF;
struct SBT
{
int key,left,right,size;
} tree[N];
int root,top;
void init(){
root=top=0;
}
/////以下函数x参数带root
void left_rot(int &x)
{
int y = tree[x].right;
tree[x].right = tree[y].left;
tree[y].left = x;
tree[y].size = tree[x].size;//转上去的节点数量为先前此处节点的size
tree[x].size = tree[tree[x].left].size + tree[tree[x].right].size + 1;
x = y;
}
void right_rot(int &x)
{
int y = tree[x].left;
tree[x].left = tree[y].right;
tree[y].right = x;
tree[y].size = tree[x].size;
tree[x].size = tree[tree[x].left].size + tree[tree[x].right].size + 1;
x = y;
}
void maintain(int &x,bool flag)
{
if(flag == false)//左边
{
if(tree[tree[tree[x].left].left].size > tree[tree[x].right].size)//左孩子的左子树大于右孩子
right_rot(x);
else if(tree[tree[tree[x].left].right].size > tree[tree[x].right].size)//右孩子的右子树大于右孩子
{
left_rot(tree[x].left);
right_rot(x);
}
else return;
}
else //右边
{
if(tree[tree[tree[x].right].right].size > tree[tree[x].left].size)//右孩子的右子树大于左孩子
left_rot(x);
else if(tree[tree[tree[x].right].left].size > tree[tree[x].left].size)//右孩子的左子树大于左孩子
{
right_rot(tree[x].right);
left_rot(x);
}
else return;
}
maintain(tree[x].left,false);
maintain(tree[x].right,true);
maintain(x,true);
maintain(x,false);
}
/*
*insert没有合并相同的元素,如果出现相同的元素则把它放到右子树上,这样能保证求第k小数的时候对相同元素也能正确
*/
void insert(int &x,int key)
{
if(x == 0)
{
x = ++top;
tree[x].left = tree[x].right = 0;
tree[x].size = 1;
tree[x].key = key;
}
else
{
tree[x].size ++;
if(key < tree[x].key) insert(tree[x].left,key);
else insert(tree[x].right,key);//相同元素插入到右子树中
maintain(x, key >= tree[x].key);//每次插入把平衡操作压入栈中
}
}
int del(int &p,int w)
{
if (tree[p].key==w || (tree[p].left==0 && w<tree[p].key) || (tree[p].right==0 && w>tree[p].key))
{
int delnum=tree[p].key;
if (tree[p].left==0 || tree[p].right==0) p=tree[p].left+tree[p].right;
else tree[p].key=del(tree[p].left,INF);
return delnum;
}
if (w<tree[p].key) return del(tree[p].left,w);
else return del(tree[p].right,w);
}
int remove(int &x,int key)
{
int d_key;
//if(!x) return 0;
tree[x].size --;
if((key == tree[x].key)||(key < tree[x].key && tree[x].left == 0) ||
(key>tree[x].key && tree[x].right == 0))
{
d_key = tree[x].key;
if(tree[x].left && tree[x].right)
{
tree[x].key = remove(tree[x].left,tree[x].key+1);
}
else
{
x = tree[x].left + tree[x].right;
}
}
else if(key > tree[x].key)
d_key = remove(tree[x].right,key);
else if(key < tree[x].key)
d_key = remove(tree[x].left,key);
return d_key;
}
int getmin()
{
int x;
for(x = root ; tree[x].left; x = tree[x].left);
return tree[x].key;
}
int getmax()
{
int x;
for(x = root ; tree[x].right; x = tree[x].right);
return tree[x].key;
}
int select(int &x,int k)//求第k小数
{
int r = tree[tree[x].left].size + 1;
if(r == k) return tree[x].key;
else if(r < k) return select(tree[x].right,k - r);
else return select(tree[x].left,k);
}
int Rank(int &x,int key)//求key排第几
{
if(key < tree[x].key)
return Rank(tree[x].left,key);
else if(key > tree[x].key)
return Rank(tree[x].right,key) + tree[tree[x].left].size + 1;
return tree[tree[x].left].size + 1;
}
int pred(int &x,int y,int key)//前驱 小于
{
if(x == 0) return y;
if(tree[x].key < key)
return pred(tree[x].right,x,key);
else return pred(tree[x].left,y,key);
}
int succ(int &x,int y,int key)//后继 大于
{
if(x == 0) return y;
if(tree[x].key > key)
return succ(tree[x].left,x,key);
else return succ(tree[x].right,y,key);
}
void inorder(int &x)
{
if(x==0) return;
else
{
inorder(tree[x].left);
cout<<x<<" "<<tree[x].key<<" "<<" "<<tree[x].size<<" "<<tree[tree[x].left].key<<" "<<tree[tree[x].right].key<<endl;
inorder(tree[x].right);
}
}