-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
60 lines (49 loc) · 1.91 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torchvision
from networks.fdrnet import FDRNet
from datasets.sbu_dataset import SBUDataset
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import os
# ckpt_path = 'ckpt/istd_epoch_010.pt'
ckpt_path = 'ckpt/sbu_epoch_010.pt'
data_root = '/home/lzhu68/hd2t/Dataset/SBU-shadow/SBU-Test'
# data_root = '/home/lzhu68/hd2t/Dataset/UCF/GouSplit'
# data_root = '/home/lzhu68/hd2t/Dataset/ISTD_Dataset/sbu_struct/test'
save_dir = 'test/raw'
os.makedirs(save_dir, exist_ok=True)
model = FDRNet(backbone='efficientnet-b3',
proj_planes=16,
pred_planes=32,
use_pretrained=True,
fix_backbone=False,
has_se=False,
dropout_2d=0,
normalize=True,
mu_init=0.4,
reweight_mode='manual')
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['net'])
# model.fr.set_mu(0.4)
model.cuda()
model.eval()
test_dataset = SBUDataset(data_root=data_root,
img_dirs=['ShadowImages'],
mask_dir='ShadowMasks',
augmentation=True,
phase='test',
normalize=False)
# print(test_dataset[0])
test_loader = DataLoader(test_dataset, batch_size=1, num_workers=0)
with torch.no_grad():
for data in tqdm(test_loader):
im = data['ShadowImages_input'].cuda()
im_name = data['im_name'][0]
save_path = os.path.join(save_dir, im_name)
gt = data['gt'][0]
pred = torch.sigmoid(model(im)['logit'].cpu())[0]
imgrid = torchvision.utils.save_image([im.cpu()[0], pred.expand_as(im[0]), gt.expand_as(im[0])], fp=save_path, nrow=3, padding=0)
from utils.evaluation import evaluate
im_grid_dir = 'test/raw'
pos_err, neg_err, ber, acc, df = evaluate(im_grid_dir, pred_id=1, gt_id=2, nimg=3, nrow=3)
print(f'\t BER: {ber:.2f}, pErr: {pos_err:.2f}, nErr: {neg_err:.2f}, acc:{acc:.4f}')