-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_tklb.py
412 lines (348 loc) · 16.7 KB
/
main_tklb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""
IN1k training script with token labeling.
Based on https://github.com/YehLi/ImageNetModel/blob/main/classification/main.py
Modifications:
* copy https://github.com/zihangJiang/TokenLabeling/tree/main/tlt/data locally to avoid extra package (tlt) installation
* logging, slurm etc.
"""
import argparse
import datetime
import os
import numpy as np
import time
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import torch
from torch import nn
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import json
from pathlib import Path
import timm
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma, distribute_bn
from timm.models.layers import trunc_normal_
# TODO: clean up token_labeling dependencies
from token_labeling.engine import train_one_epoch, evaluate
from token_labeling.tlt_data import create_token_label_target, TokenLabelMixup, FastCollateTokenLabelMixup, \
create_token_label_loader, create_token_label_dataset
from token_labeling.loss import TokenLabelGTCrossEntropy, TokenLabelCrossEntropy, TokenLabelSoftTargetCrossEntropy
from fvcore.nn import FlopCountAnalysis, flop_count_table
import hydra
from omegaconf import DictConfig, OmegaConf
import ConvNextV2.utils as cx2utils
from benchmark import InferenceBenchmarkRunner
import models.glnet_tklb
# import warnings
# warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
def build_token_label(args):
dataset_train = create_token_label_dataset(
'', root=args.data_path, label_root=args.token_label_data,
use_memcache=args.use_memcache,
mc_config_path=args.mc_config_path) if not args.eval else None
dataset_eval = timm.data.create_dataset('',
root=args.data_path,
split='validation',
is_training=False,
batch_size=int(1.5 * args.batch_size))
# setup mixup / cutmix
collate_fn = None
mixup_fn = None
args.mixup = 0.0
args.cutmix = 0.0
args.cutmix_minmax = None
args.train_interpolation = 'random'
args.prefetcher = True
num_aug_splits = 0
args.pin_mem = False
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
# create data loaders w/ augmentation pipeiine
train_interpolation = args.train_interpolation
if args.token_label and args.token_label_data:
use_token_label = True
else:
use_token_label = False
loader_train = create_token_label_loader(
dataset_train,
input_size=(3, args.input_size, args.input_size),
batch_size=args.batch_size,
is_training=True,
use_prefetcher=args.prefetcher,
no_aug=args.no_aug,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
re_split=args.resplit,
scale=args.scale,
ratio=args.ratio,
hflip=args.hflip,
vflip=args.vflip,
color_jitter=args.color_jitter,
auto_augment=args.aa,
num_aug_splits=num_aug_splits,
interpolation=train_interpolation,
mean=timm.data.constants.IMAGENET_DEFAULT_MEAN,
std=timm.data.constants.IMAGENET_DEFAULT_STD,
num_workers=args.num_workers,
distributed=args.distributed,
collate_fn=collate_fn,
pin_memory=args.pin_mem,
use_multi_epochs_loader=args.use_multi_epochs_loader,
use_token_label=use_token_label) if not args.eval else None
loader_eval = timm.data.create_loader(
dataset_eval,
input_size=(3, args.input_size, args.input_size),
batch_size=int(1.5 * args.batch_size),
is_training=False,
use_prefetcher=args.prefetcher,
interpolation='bicubic',
mean=timm.data.constants.IMAGENET_DEFAULT_MEAN,
std=timm.data.constants.IMAGENET_DEFAULT_STD,
num_workers=args.num_workers,
distributed=args.distributed,
crop_pct=0.96,
pin_memory=args.pin_mem,
persistent_workers=False
)
return dataset_train, loader_train, dataset_eval, loader_eval, mixup_fn, 1000
def build_imagenet_dataset(args):
assert args.token_label_data
return build_token_label(args)
def main(args):
cx2utils.init_distributed_mode(args)
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + cx2utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
global_rank = cx2utils.get_rank()
num_tasks = cx2utils.get_world_size()
dataset_train, data_loader_train, dataset_val, data_loader_val, mixup_fn, args.nb_classes \
= build_imagenet_dataset(args)
#################### Throughput Benchmark ##################################
bench_results = None
if global_rank == 0 and args.benchmark:
print('Run inference throughput benchmark')
bench = InferenceBenchmarkRunner(
model_name=args.model, device='cuda', batch_size=128)
torch.cuda.empty_cache()
bench_results = bench.run()
print(f'--benchmark result\n{json.dumps(bench_results, indent=4)}')
del bench
torch.cuda.empty_cache()
#################### Create Model ###########################################
print(f"Creating model: {args.model}")
model:nn.Module = create_model(
args.model,
pretrained=args.load_release,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
token_label=args.token_label,
)
# TODO: check if we need the line below
# model.eval()
#################### Flops Analysis Table ###################################
if global_rank == 0:
flops = FlopCountAnalysis(model, torch.rand(1, 3, args.input_size, args.input_size))
print(flop_count_table(flops))
#################### finetune if specified ###################################
if args.finetune:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load pre-trained checkpoint from: %s" % args.finetune)
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
cx2utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix)
# manually initialize fc layer
trunc_normal_(model.head.weight, std=2e-5)
torch.nn.init.constant_(model.head.bias, 0.)
model.to(device)
####################### create model ema if specified #######################
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
#################### model specs & DDP wrapper #############################
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
############################## lr scaling & optimizer & loss #########################
linear_scaled_lr = args.lr * args.batch_size * cx2utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
print(f"Linearly scaled lr {linear_scaled_lr}!")
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = TokenLabelCrossEntropy(dense_weight=args.dense_weight, \
cls_weight=args.cls_weight, mixup_active=False).cuda()
############################## auto resume #########################################
# NOTE:auto_load_model may recover args._max_accuracy, args._max_accuracy_ema, args._pavi_tid
args._max_accuracy = 0.0
if args.model_ema and args.model_ema_eval:
args._max_accuracy_ema = 0.0
args._pavi_tid = None # for pavi logger resume
cx2utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)
if args.distributed:
dist.barrier()
############################# eval mode shortcut if specified ####################################
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
############################# training visualizer ####################################
# NOTE: logging is only needed for trainining, hence put logger initialization after eval shortcut
if global_rank == 0 and hasattr(args, "pavi"):
assert args.pavi.name and args.pavi.tag # required args
if args._pavi_tid is not None:
print(f'resume logging to pavi (training_id={args._pavi_tid})')
# if log_dir is set, use it
# else use args.pavi.log_dir for local storage of events
log_dir = args.log_dir or args.pavi.log_dir
log_writer = cx2utils.PaviLogger(
# log_dir=args.pavi.log_dir,
# NOTE: hack, see if the output is compatiable with tensorboard
log_dir=log_dir,
training_id=args._pavi_tid,
name=args.pavi.name,
project=args.pavi.project,
tags=args.pavi.tag,
description=args.pavi.description
)
args._pavi_tid = log_writer.training_id # to be checkpointed for resume
print(f'Pavi logger is created (training_id={args._pavi_tid})! ')
elif global_rank == 0:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = cx2utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
if (log_writer is not None) and (bench_results is not None):
log_writer.update(head='bench', step=0, **bench_results)
############################## training loop ###########################
dist.barrier()
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.fp32_resume and epoch > args.start_epoch + 1:
args.fp32_resume = False
loss_scaler._scaler = torch.cuda.amp.GradScaler(enabled=not args.fp32_resume)
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
# NOTE: We use epoch_1000x as the x-axis in tensorboard.
# This calibrates different curves when batch size changes.
log_writer.set_step(epoch*1000)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn,
set_training_mode=args.finetune == '', # keep in eval mode during finetuning
fp32=args.fp32_resume, args=args,
log_writer=log_writer
)
if args.distributed:
print('Distributing BatchNorm running means and vars')
distribute_bn(model, cx2utils.get_world_size(), True)
lr_scheduler.step(epoch)
############# logging & checkpointing routines ##############
if log_writer is not None:
log_writer.update(head="epoch_all_proc_avg", step=epoch, **train_stats)
if args.output_dir and args.save_ckpt:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
cx2utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema)
######################### eval & save best ###################
if data_loader_val is not None:
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the model on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
if args._max_accuracy < test_stats["acc1"]:
args._max_accuracy = test_stats["acc1"]
if args.output_dir and args.save_ckpt:
cx2utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best", model_ema=model_ema)
print(f'Max accuracy: {args._max_accuracy:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch)
log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch)
log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# repeat testing routines for EMA, if ema eval is turned on
if args.model_ema and args.model_ema_eval:
test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=args.use_amp)
print(f"Accuracy of the model EMA on {len(dataset_val)} test images: {test_stats_ema['acc1']:.1f}%")
if args._max_accuracy_ema < test_stats_ema["acc1"]:
args._max_accuracy_ema = test_stats_ema["acc1"]
if args.output_dir and args.save_ckpt:
cx2utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best-ema", model_ema=model_ema)
print(f'Max EMA accuracy: {args._max_accuracy_ema:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1_ema=test_stats_ema['acc1'], head="perf", step=epoch)
log_stats.update({**{f'test_{k}_ema': v for k, v in test_stats_ema.items()}})
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and cx2utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if log_writer is not None:
log_writer.close()
@hydra.main(version_base=None, config_path="./configs", config_name="main_tklb.yaml")
def hydra_app(args:DictConfig):
# NOTE: enable write to unknow field of cfg
# hence it behaves like argparse.NameSpace
# https://stackoverflow.com/a/66296809
OmegaConf.set_struct(args, False)
if not hasattr(args, 'slurm'): # run locally
if args.output_dir is not None:
# https://stackoverflow.com/a/73007887, read config in "hydra" section
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
args.output_dir = hydra_cfg['runtime']['output_dir'] # path where to save
main(args=args)
else:
from slurm_wrapper import run_with_submitit
if args.slurm.job_dir is None:
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
args.slurm.job_dir = hydra_cfg['runtime']['output_dir']
args.output_dir = args.slurm.job_dir
# NOTE: main cannot be pickled and cause an error, hence my solution is
# import main to slurm wrapper according to args._entrance_id (a string)
# see slurm_wrapper.get_main_func_entrance()
args._entrance_id = 'main_tklb'
run_with_submitit(args=args)
if __name__ == '__main__':
hydra_app()