-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathworker.py
234 lines (204 loc) · 9.9 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""A GPU worker class."""
import os
from typing import Dict, List, Optional, Tuple
import torch
import torch.distributed
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.model_executor import set_random_seed
from vllm.model_executor.parallel_utils.parallel_state import (
initialize_model_parallel)
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.model_runner import ModelRunner
class Worker:
"""A worker class that executes (a partition of) the model on a GPU.
Each worker is associated with a single GPU. The worker is responsible for
maintaining the KV cache and executing the model on the GPU. In case of
distributed inference, each worker is assigned a partition of the model.
"""
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
rank: Optional[int] = None,
distributed_init_method: Optional[str] = None,
) -> None:
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.rank = rank
self.distributed_init_method = distributed_init_method
self.model_runner = ModelRunner(model_config, parallel_config,
scheduler_config)
# Uninitialized cache engine. Will be initialized by
# self.init_cache_engine().
self.cache_config = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None
# use a separate cache for system KVs, init it in self.init_prefix_cache()
n_layers = self.model_config.get_num_layers(self.parallel_config)
self.prefix_gpu_cache = [(None, None) for _ in range(n_layers) ]
def init_model(self) -> None:
# torch.distributed.all_reduce does not free the input tensor until
# the synchronization point. This causes the memory usage to grow
# as the number of all_reduce calls increases. This env var disables
# this behavior.
# Related issue:
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
# This env var set by Ray causes exceptions with graph building.
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
# Env vars will be set by Ray.
self.rank = self.rank if self.rank is not None else int(
os.getenv("RANK", "-1"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
self.device = torch.device(f"cuda:{local_rank}")
if self.rank < 0:
raise ValueError("Invalid or unspecified rank.")
torch.cuda.set_device(self.device)
_check_if_gpu_supports_dtype(self.model_config.dtype)
# Initialize the distributed environment.
_init_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method)
# Initialize the model.
set_random_seed(self.model_config.seed)
def load_model(self):
self.model_runner.load_model()
@torch.inference_mode()
def profile_num_available_blocks(
self,
block_size: int,
gpu_memory_utilization: float,
cpu_swap_space: int,
) -> Tuple[int, int]:
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.cuda.empty_cache()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.cuda.synchronize()
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
peak_memory = total_gpu_memory - free_gpu_memory
cache_block_size = CacheEngine.get_cache_block_size(
block_size, self.model_config, self.parallel_config)
num_gpu_blocks = int(
(total_gpu_memory * gpu_memory_utilization - peak_memory) //
cache_block_size)
num_cpu_blocks = int(cpu_swap_space // cache_block_size)
num_gpu_blocks = max(num_gpu_blocks, 0)
num_cpu_blocks = max(num_cpu_blocks, 0)
torch.cuda.empty_cache()
return num_gpu_blocks, num_cpu_blocks
@torch.inference_mode()
def fill_prefix_kv_cache(self, prefix_token_ids:List[int]):
assert self.model_config.enable_relay_attention
assert len(prefix_token_ids) <= self.prefix_gpu_cache[0][0].size(1)
self.model_runner.fill_prefix_kv_cache(prefix_token_ids, self.prefix_gpu_cache)
torch.cuda.synchronize()
def init_prefix_cache(self) -> None:
# relay attention will use a separate kv cache for the shared prefix
if self.model_config.enable_relay_attention:
max_len = self.model_config.max_model_len
n_kvheads = self.model_config.get_num_kv_heads(self.parallel_config)
head_dim = self.model_config.get_head_size()
n_layers = self.model_config.get_num_layers(self.parallel_config)
self.prefix_gpu_cache = [(torch.empty(1, max_len, n_kvheads, head_dim,
dtype=self.model_config.dtype,
device='cuda'),
torch.empty(1, max_len, n_kvheads, head_dim,
dtype=self.model_config.dtype,
device='cuda'))
for _ in range(n_layers) ]
else:
# use a placeholder to keep consistent interface
n_layers = self.model_config.get_num_layers(self.parallel_config)
self.prefix_gpu_cache = [(None, None) for _ in range(n_layers) ]
def init_cache_engine(self, cache_config: CacheConfig) -> None:
self.cache_config = cache_config
self.cache_engine = CacheEngine(self.cache_config, self.model_config,
self.parallel_config)
self.cache_events = self.cache_engine.events
self.gpu_cache = self.cache_engine.gpu_cache
self.model_runner.set_block_size(self.cache_engine.block_size)
def warm_up_model(self) -> None:
if not self.model_config.enforce_eager:
self.model_runner.capture_model(self.gpu_cache, self.prefix_gpu_cache)
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
set_random_seed(self.model_config.seed)
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> SamplerOutput:
# Issue cache operations.
issued_cache_op = False
if blocks_to_swap_in:
self.cache_engine.swap_in(blocks_to_swap_in)
issued_cache_op = True
if blocks_to_swap_out:
self.cache_engine.swap_out(blocks_to_swap_out)
issued_cache_op = True
if blocks_to_copy:
self.cache_engine.copy(blocks_to_copy)
issued_cache_op = True
cache_events = self.cache_events if issued_cache_op else None
# Wait for cache operations to finish.
# TODO(woosuk): Profile swapping overhead and optimize if needed.
if cache_events is not None:
for event in cache_events:
event.wait()
# If there is no input, we don't need to execute the model.
if not seq_group_metadata_list:
return {}
output = self.model_runner.execute_model(seq_group_metadata_list,
self.gpu_cache,
self.prefix_gpu_cache)
return output
def _init_distributed_environment(
parallel_config: ParallelConfig,
rank: int,
distributed_init_method: Optional[str] = None,
) -> None:
"""Initialize the distributed environment."""
if torch.distributed.is_initialized():
torch_world_size = torch.distributed.get_world_size()
if torch_world_size != parallel_config.world_size:
raise RuntimeError(
"torch.distributed is already initialized but the torch world "
"size does not match parallel_config.world_size "
f"({torch_world_size} vs. {parallel_config.world_size}).")
elif not distributed_init_method:
raise ValueError(
"distributed_init_method must be set if torch.distributed "
"is not already initialized")
else:
torch.distributed.init_process_group(
backend="nccl",
world_size=parallel_config.world_size,
rank=rank,
init_method=distributed_init_method,
)
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
initialize_model_parallel(parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
# Check if the GPU supports the dtype.
if torch_dtype == torch.bfloat16:
compute_capability = torch.cuda.get_device_capability()
if compute_capability[0] < 8:
gpu_name = torch.cuda.get_device_name()
raise ValueError(
"Bfloat16 is only supported on GPUs with compute capability "
f"of at least 8.0. Your {gpu_name} GPU has compute capability "
f"{compute_capability[0]}.{compute_capability[1]}.")