forked from fogleman/Quads
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
188 lines (176 loc) · 5.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from PIL import Image, ImageDraw
from collections import Counter
import heapq
import sys
MODE_RECTANGLE = 1
MODE_ELLIPSE = 2
MODE_ROUNDED_RECTANGLE = 3
MODE = MODE_RECTANGLE
ITERATIONS = 1024
LEAF_SIZE = 4
PADDING = 1
FILL_COLOR = (0, 0, 0)
SAVE_FRAMES = False
ERROR_RATE = 0.5
AREA_POWER = 0.25
OUTPUT_SCALE = 1
def weighted_average(hist):
total = sum(hist)
value = sum(i * x for i, x in enumerate(hist)) / total
error = sum(x * (value - i) ** 2 for i, x in enumerate(hist)) / total
error = error ** 0.5
return value, error
def color_from_histogram(hist):
r, re = weighted_average(hist[:256])
g, ge = weighted_average(hist[256:512])
b, be = weighted_average(hist[512:768])
e = re * 0.2989 + ge * 0.5870 + be * 0.1140
return (int(r), int(g), int(b)), e
def rounded_rectangle(draw, box, radius, color):
l, t, r, b = box
d = radius * 2
draw.ellipse((l, t, l + d, t + d), color)
draw.ellipse((r - d, t, r, t + d), color)
draw.ellipse((l, b - d, l + d, b), color)
draw.ellipse((r - d, b - d, r, b), color)
d = radius
draw.rectangle((l, t + d, r, b - d), color)
draw.rectangle((l + d, t, r - d, b), color)
class Quad(object):
def __init__(self, model, box, depth):
self.model = model
self.box = box
self.depth = depth
hist = self.model.im.crop(self.box).histogram()
self.color, self.error = color_from_histogram(hist)
self.leaf = self.is_leaf()
self.area = self.compute_area()
self.children = []
def is_leaf(self):
l, t, r, b = self.box
return int(r - l <= LEAF_SIZE or b - t <= LEAF_SIZE)
def compute_area(self):
l, t, r, b = self.box
return (r - l) * (b - t)
def split(self):
l, t, r, b = self.box
lr = l + (r - l) / 2
tb = t + (b - t) / 2
depth = self.depth + 1
tl = Quad(self.model, (l, t, lr, tb), depth)
tr = Quad(self.model, (lr, t, r, tb), depth)
bl = Quad(self.model, (l, tb, lr, b), depth)
br = Quad(self.model, (lr, tb, r, b), depth)
self.children = (tl, tr, bl, br)
return self.children
def get_leaf_nodes(self, max_depth=None):
if not self.children:
return [self]
if max_depth is not None and self.depth >= max_depth:
return [self]
result = []
for child in self.children:
result.extend(child.get_leaf_nodes(max_depth))
return result
def __lt__(self, other):
l, t, r ,b = self.box
o_l, o_t, o_r, o_b = other.box
h = b - t
w = r - l
size = h * w
o_h = o_b - o_t
o_w = o_r - o_l
o_size = o_h* o_w
return size < o_size
class Model(object):
def __init__(self, image):
if isinstance(image, Image.Image):
self.im = image
else:
self.im = Image.open(path).convert('RGB')
self.width, self.height = self.im.size
self.heap = []
self.root = Quad(self, (0, 0, self.width, self.height), 0)
self.error_sum = self.root.error * self.root.area
self.push(self.root)
@property
def quads(self):
return [x[-1] for x in self.heap]
def average_error(self):
return self.error_sum / (self.width * self.height)
def push(self, quad):
score = -quad.error * (quad.area ** AREA_POWER)
heapq.heappush(self.heap, (quad.leaf, score, quad))
def pop(self):
return heapq.heappop(self.heap)[-1]
def split(self):
quad = self.pop()
self.error_sum -= quad.error * quad.area
children = quad.split()
for child in children:
self.push(child)
self.error_sum += child.error * child.area
def render(self, path, max_depth=None):
m = OUTPUT_SCALE
dx, dy = (PADDING, PADDING)
im = Image.new('RGB', (self.width * m + dx, self.height * m + dy))
draw = ImageDraw.Draw(im)
draw.rectangle((0, 0, self.width * m, self.height * m), FILL_COLOR)
for quad in self.root.get_leaf_nodes(max_depth):
l, t, r, b = quad.box
box = (int(l * m + dx), int(t * m + dy), int(r * m - 1), int(b * m - 1))
if MODE == MODE_ELLIPSE:
draw.ellipse(box, quad.color)
elif MODE == MODE_ROUNDED_RECTANGLE:
radius = m * min((r - l), (b - t)) / 4
rounded_rectangle(draw, box, radius, quad.color)
else:
draw.rectangle(box, quad.color)
del draw
if path:
im.save(path, 'PNG')
else:
return im
def main(image, mode = 2, iterations=ITERATIONS, leaf_size = 4, padding = 1, fill_color = (0,0,0), error_rate= 0.5, area_power = 0.25, output_scale = 1):
global MODE
global ITERATIONS
global LEAF_SIZE
global PADDING
global FILL_COLOR
global SAVE_FRAMES
global ERROR_RATE
global AREA_POWER
global OUTPUT_SCALE
ITERATIONS = iterations
MODE = mode
LEAF_SIZE = leaf_size
PADDING = padding
FILL_COLOR = fill_color
FILL_COLOR = tuple([int(el) for el in fill_color])
ERROR_RATE = error_rate
AREA_POWER = area_power
OUTPUT_SCALE = output_scale
model = Model(image)
previous = None
for i in range(iterations):
error = model.average_error()
if previous is None or previous - error > ERROR_RATE:
print(i, error)
if SAVE_FRAMES:
model.render('frames/%06d.png' % i)
previous = error
model.split()
return model.render(path=None)
print('-' * 32)
depth = Counter(x.depth for x in model.quads)
for key in sorted(depth):
value = depth[key]
n = 4 ** key
pct = 100.0 * value / n
print('%3d %8d %8d %8.2f%%' % (key, n, value, pct))
print('-' * 32)
print(' %8d %8.2f%%' % (len(model.quads), 100))
# for max_depth in range(max(depth.keys()) + 1):
# model.render('out%d.png' % max_depth, max_depth)
if __name__ == '__main__':
main()