-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathTransforms.py
134 lines (102 loc) · 4.13 KB
/
Transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#
# author: Sachin Mehta
# Project Description: This repository contains source code for semantically segmenting WSIs; however, it could be easily
# adapted for other domains such as natural image segmentation
# File Description: This file contains the source code for different types of augmentation and numpy to Tensor Conversion.
# ==============================================================================
import numpy as np
import torch
import random
import cv2
class Zoom(object):
def __init__(self, w, h):
self.w = w
self.h = h
def __call__(self, img, label, label1):
h1, w1 = img.shape[:2]
startH = random.randint(0, int(abs(self.h - h1)/2))
startW = random.randint(0, int(abs(self.w - w1)/2))
img = cv2.resize(img, (self.w, self.h))
label = cv2.resize(label, (self.w, self.h), interpolation=cv2.INTER_NEAREST)
img = img[startH:startH + h1, startW:startW + w1]
label = label[startH:startH + h1, startW:startW + w1]
return [img, label, label1]
class RandomCropResize(object):
"""
Randomly crop and resize the given PIL image with a probability of 0.5
"""
def __init__(self, crop_area):
self.cw = crop_area
self.ch = crop_area
def __call__(self, img, label, label1):
if random.random() < 0.5:
w, h = img.shape[:2]
x1 = random.randint(0, self.ch)
y1 = random.randint(0, self.cw)
img_crop = img[y1:h-y1, x1:w-x1]
label_crop = label[y1:h-y1, x1:w-x1]
img_crop = cv2.resize(img_crop, (w, h))
label_crop = cv2.resize(label_crop, (w,h), interpolation=cv2.INTER_NEAREST)
return [img_crop, label_crop, label1]
else:
return [img, label, label1]
class RandomCrop(object):
def __init__(self, scale):
self.crop = scale
def __call__(self, img, label, label1):
if random.random() < 0.5:
w, h = img.shape[:2]
img_crop = img[self.crop:h-self.crop, self.crop:w-self.crop]
label_crop = label[self.crop:h-self.crop, self.crop:w-self.crop]
return [img_crop, label_crop, label1]
else:
return [img, label, label1]
class RandomHorizontalFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __call__(self, image, label, label1):
if random.random() < 0.5:
x1 = random.randint(0, 1)
if x1 == 0:
image = cv2.flip(image, 0) # horizontal flip
label = cv2.flip(label, 0) # horizontal flip
else:
image = cv2.flip(image, 1) # veritcal flip
label = cv2.flip(label, 1) # veritcal flip
return [image, label, label1]
class Normalize(object):
"""Given mean: (R, G, B) and std: (R, G, B),
will normalize each channel of the torch.*Tensor, i.e.
channel = (channel - mean) / std
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, label, label1):
image = image.astype(np.float32)
for i in range(3):
image[:,:,i] -= self.mean[i]
for i in range(3):
image[:,:, i] /= self.std[i]
return [image, label, label1]
class ToTensor(object):
def __init__(self, scale=1):
self.scale = scale
def __call__(self, image, label, label1):
if self.scale != 1:
w, h = label.shape[:2]
label = cv2.resize(label, (int(w/self.scale), int(h/self.scale)), interpolation=cv2.INTER_NEAREST)
image = image.transpose((2,0,1))
image = image.astype(np.float32)
image_tensor = torch.from_numpy(image).div(255)
label_tensor = torch.LongTensor(np.array(label, dtype=np.int)) #torch.from_numpy(label)
return [image_tensor, label_tensor, label1]
class Compose(object):
"""Composes several transforms together.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *args):
for t in self.transforms:
args = t(*args)
return args