-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathpsnr.m
57 lines (47 loc) · 1.8 KB
/
psnr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
function [PSNR_Value] = psnr(num_images)
% if the num_images variable is not specified use the default value of
% 1
if ~exist('num_images','var')
num_images = 1;
end
currDir = cd ('images');
[threshold] = textread('threshold.data', '%s');
n = 100;
PSNR_Value = zeros(n, 5);
for i = 1:num_images
src = strcat('image',int2str(i),'*Orig.jpg');
origFile = dir(src);
try
origFileName = imread(origFile(1).name);
catch exception
error('the original image file doesnot exist');
end
for j = 1:length(threshold)
copy = strcat('image',int2str(i),'*', threshold{j}, 'Copy.jpg');
fileNames = dir(copy);
filename = fileNames.name;
I = origFileName;
try
Ihat = imread(filename);
catch exception
error('the copy of image file doesnot exist');
end
% Read the dimensions of the image.
[rows columns ~] = size(I);
% Calculate mean square error of R, G, B.
mseRImage = (double(I(:,:,1)) - double(Ihat(:,:,1))) .^ 2;
mseGImage = (double(I(:,:,2)) - double(Ihat(:,:,2))) .^ 2;
mseBImage = (double(I(:,:,3)) - double(Ihat(:,:,3))) .^ 2;
mseR = sum(sum(mseRImage)) / (rows * columns);
mseG = sum(sum(mseGImage)) / (rows * columns);
mseB = sum(sum(mseBImage)) / (rows * columns);
% Average mean square error of R, G, B.
mse = (mseR + mseG + mseB)/3;
% Calculate PSNR (Peak Signal to noise ratio).
PSNR_Value(i, j) = 10 * log10( 255^2 / mse);
end
end
PSNR_Value = PSNR_Value(1:i, :);
% go to src directory %
cd ..;
end