-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathtest.py
147 lines (130 loc) · 4.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from cerberus import Validator as _Validator
import pytest
import etsy
import pprint
pp = pprint.PrettyPrinter(indent=4)
# enable cache
etsy.BASE_CONFIG["cache"] = True
class Validator(_Validator):
def _validate_min_presence(self, min_presence, field, value):
pass # required for adding non-standard keys to schema
def require_min_presence(items, key, min_perc=0.1):
"""check whether dataset contains items with some amount of non-null values for a given key"""
count = sum(1 for item in items if item.get(key))
if count < len(items) * min_perc:
pytest.fail(
f'inadequate presence of "{key}" field in dataset, only {count} out of {len(items)} items have it (expected {min_perc*100}%)'
)
def validate_or_fail(item, validator):
if not validator.validate(item):
pp.pformat(item)
pytest.fail(f"Validation failed for item: {pp.pformat(item)}\nErrors: {validator.errors}")
product_schema = {
"@type": {"type": "string"},
"@context": {"type": "string"},
"url": {"type": "string"},
"name": {"type": "string"},
"sku": {"type": "string"},
"gtin": {"type": "string"},
"description": {"type": "string"},
"category": {"type": "string"},
"logo": {"type": "string"},
"reviews": {
"type": "list",
"schema": {
"type": "dict",
"schema": {
"@type": {"type": "string"},
"datePublished": {"type": "string"},
"reviewBody": {"type": "string"},
}
}
},
"material": {"type": "string"}
}
shop_schema = {
"@type": {"type": "string"},
"@context": {"type": "string"},
"itemListElement": {
"type": "list",
"schema": {
"type": "dict",
"schema": {
"@context": {"type": "string"},
"@type": {"type": "string"},
"image": {"type": "string"},
"name": {"type": "string"},
"url": {"type": "string"},
"brand": {
"type": "dict",
"schema": {
"@type": {"type": "string"},
"name": {"type": "string"},
}
},
"offers": {
"type": "dict",
"schema": {
"@type": {"type": "string"},
"price": {"type": "string"},
"priceCurrency": {"type": "string"},
}
},
"position": {"type": "integer"}
}
}
}
}
search_schema = {
"productLink": {"type": "string"},
"productTitle": {"type": "string"},
"productImage": {"type": "string"},
"seller": {"type": "string", "nullable": True},
"listingType": {"type": "string"},
"productRate": {"type": "float", "nullable": True},
"numberOfReviews": {"type": "integer", "nullable": True},
"freeShipping": {"type": "string"},
"productPrice": {"type": "float"},
"priceCurrency": {"type": "string"},
"discount": {"type": "string"},
}
@pytest.mark.asyncio
@pytest.mark.flaky(reruns=3, reruns_delay=30)
async def test_product_scraping():
product_data = await etsy.scrape_product(
urls = [
"https://www.etsy.com/listing/971370843",
"https://www.etsy.com/listing/529765307",
"https://www.etsy.com/listing/949905096"
]
)
validator = Validator(product_schema, allow_unknown=True)
for item in product_data:
validate_or_fail(item, validator)
assert len(product_data) >= 1
@pytest.mark.asyncio
@pytest.mark.flaky(reruns=3, reruns_delay=30)
async def test_shop_scraping():
shop_data = await etsy.scrape_shop(
urls = [
"https://www.etsy.com/shop/FalkelDesign",
"https://www.etsy.com/shop/JoshuaHouseCrafts",
"https://www.etsy.com/shop/Oakywood"
]
)
validator = Validator(shop_schema, allow_unknown=True)
for item in shop_data:
validate_or_fail(item, validator)
assert len(shop_data) >= 1
@pytest.mark.asyncio
@pytest.mark.flaky(reruns=3, reruns_delay=30)
async def test_search_scraping():
search_data = await etsy.scrape_search(
url="https://www.etsy.com/search?q=wood+laptop+stand", max_pages=2
)
validator = Validator(search_schema, allow_unknown=True)
for item in search_data:
validate_or_fail(item, validator)
for k in search_schema:
require_min_presence(search_data, k, min_perc=search_schema[k].get("min_presence", 0.1))
assert len(search_data) >= 64