-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathtest.py
115 lines (97 loc) · 3.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from cerberus import Validator as _Validator
import pytest
import g2
import pprint
pp = pprint.PrettyPrinter(indent=4)
# enable cache
g2.BASE_CONFIG["cache"] = True
class Validator(_Validator):
def _validate_min_presence(self, min_presence, field, value):
pass # required for adding non-standard keys to schema
def require_min_presence(items, key, min_perc=0.1):
"""check whether dataset contains items with some amount of non-null values for a given key"""
count = sum(1 for item in items if item.get(key))
if count < len(items) * min_perc:
pytest.fail(
f'inadequate presence of "{key}" field in dataset, only {count} out of {len(items)} items have it (expected {min_perc*100}%)'
)
def validate_or_fail(item, validator):
if not validator.validate(item):
pp.pformat(item)
pytest.fail(
f"Validation failed for item: {pp.pformat(item)}\nErrors: {validator.errors}"
)
review_schema = {
"author": {
"type": "dict",
"schema": {
"authorName": {"type": "string", "nullable": True},
"authorProfile": {"type": "string", "nullable": True},
"authorPosition": {"type": "string", "nullable": True},
},
},
"review": {
"type": "dict",
"schema": {
"reviewData": {"type": "string"},
"reviewRate": {"type": "float"},
"reviewTitle": {"type": "string"},
"reviewLikes": {"type": "string"},
"reviewDilikes": {"type": "string"},
},
},
}
search_schema = {
"name": {"type": "string"},
"link": {"type": "string"},
"image": {"type": "string", "nullable": True},
"rate": {"type": "float", "nullable": True},
"reviewsNumber": {"type": "integer", "nullable": True},
}
alternatives_schema = {
"name": {"type": "string"},
"link": {"type": "string"},
"ranking": {"type": "string"},
"numberOfReviews": {"type": "integer"},
"rate": {"type": "float"},
"description": {"type": "string"},
}
@pytest.mark.asyncio
async def test_review_scraping():
review_data = await g2.scrape_reviews(
url="https://www.g2.com/products/digitalocean/reviews", max_review_pages=2
)
validator = Validator(review_schema, allow_unknown=True)
for item in review_data:
validate_or_fail(item, validator)
for k in review_schema:
require_min_presence(
review_data, k, min_perc=review_schema[k].get("min_presence", 0.1)
)
assert len(review_data) >= 20
@pytest.mark.asyncio
async def test_search_scraping():
search_data = await g2.scrape_search(
url="https://www.g2.com/search?query=Infrastructure", max_scrape_pages=2
)
validator = Validator(search_schema, allow_unknown=True)
for item in search_data:
validate_or_fail(item, validator)
for k in search_schema:
require_min_presence(
search_data, k, min_perc=search_schema[k].get("min_presence", 0.1)
)
assert len(search_data) >= 20
@pytest.mark.asyncio
async def test_alternative_scraping():
alternatives_data = await g2.scrape_alternatives(product="digitalocean")
validator = Validator(alternatives_schema, allow_unknown=True)
for item in alternatives_data:
validate_or_fail(item, validator)
for k in alternatives_schema:
require_min_presence(
alternatives_data,
k,
min_perc=alternatives_schema[k].get("min_presence", 0.1),
)
assert len(alternatives_data) == 10