-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathevaluate_all.py
125 lines (102 loc) · 3.84 KB
/
evaluate_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import re
import sys
from pathlib import Path
from base_models import datasets, models
from metrics import calc_all
from omegaconf import OmegaConf
from plotter import plot_line
from torch.utils.data import DataLoader
from tqdm import tqdm
checkpoint_pattern = re.compile(r"epoch=(\d+)-step=(\d+).ckpt")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-cd", "--checkpoint-dir", help="Checkpoint directory", default=None
)
parser.add_argument(
"-ckpt", "--checkpoint-path", help="Checkpoint path", default=None
)
parser.add_argument("-c", "--config-file", help="Config file path")
parser.add_argument("-d", "--dataset-name", help="Dataset to use")
parser.add_argument("-bs", "--batch-size", help="Batch size", type=int, default=1)
parser.add_argument("-p", "--plot", action="store_true", help="Plot stats")
args = parser.parse_args()
conf = OmegaConf.load(args.config_file)
base_model = models.get(conf.model_class)
if not base_model:
raise Exception("Wrong model.")
model_class, tokenizer_class = (
base_model["model_class"],
base_model["tokenizer_class"],
)
tokenizer = tokenizer_class.from_pretrained(conf.base_model_name)
dataset = datasets.get(args.dataset_name)
if not dataset:
raise Exception("Wrong dataset.")
dataset_class = dataset["dataset_class"]
out_dim = conf.out_dim
test_set = (
dataset_class(dataset["test_file"], tokenizer, out_dim)
if dataset["test_file"]
else None
)
dataloader = DataLoader(test_set, batch_size=args.batch_size)
epochs, mis, aus = [], [], []
def find_checkpoints(checkpoint_directory):
ordered_checkpoints = {}
for checkpoint_path in Path(checkpoint_directory).glob("**/*.ckpt"):
match = checkpoint_pattern.match(checkpoint_path.name)
if match:
ordered_checkpoints[int(match.group(1))] = str(checkpoint_path)
for key in sorted(ordered_checkpoints.keys()):
yield key, ordered_checkpoints[key]
if args.checkpoint_path:
model = model_class.load_from_checkpoint(
args.checkpoint_path,
strict=False,
tokenizer=tokenizer,
iterations_per_training_epoch=None,
latent_dim=conf.latent_dim,
pooling_strategy=conf.pooling_strategy,
min_z=conf.min_z,
fixed_reg_weight=None,
base_model=conf.base_model_name,
)
model.eval()
model.cuda()
ppl, nll, elbo, rec, kl, mi, au = calc_all(model, dataloader, verbose=False)
print(
f"[{args.checkpoint_path}]"
+ f"PPL: {ppl}, NLL: {nll}, ELBO: {elbo}, REC: {rec}, KL: {kl},"
+ f"mi:{mi} au: {au}"
)
sys.exit()
checkpoints = list(find_checkpoints(args.checkpoint_dir))
for i, (key, checkpoint_path) in enumerate(tqdm(checkpoints)):
model = model_class.load_from_checkpoint(
checkpoint_path,
strict=False,
tokenizer=tokenizer,
iterations_per_training_epoch=None,
latent_dim=conf.latent_dim,
pooling_strategy=conf.pooling_strategy,
min_z=conf.min_z,
fixed_reg_weight=None,
base_model=conf.base_model_name,
)
model.eval()
model.cuda()
ppl, nll, elbo, rec, kl, mi, au = calc_all(model, dataloader, verbose=False)
epochs.append(i + 1)
mis.append(mi)
aus.append(au)
print(
f"[{checkpoint_path}]"
+ f"PPL: {ppl}, NLL: {nll}, ELBO: {elbo}, REC: {rec}, KL: {kl},"
+ f"mi:{mi} au: {au}"
)
if args.plot:
plot_line(
"mi_and_au", "Epochs", "MI and AU", epochs, [("MI", mis), ("AU", aus)]
)